• Title/Summary/Keyword: Phase change behavior

Search Result 385, Processing Time 0.027 seconds

Effects of Heat Treatment on Secondary Phase Formation and Nanoindentation Creep Behavior of Nanocrystalline CoCrFeMnNi High-entropy alloy (나노결정립 CoCrFeMnNi 고엔트로피합금의 열처리에 따른 이차상 형성 및 나노압입 크리프 거동 변화 연구)

  • Dong-Hyun Lee;Jae-il Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.128-136
    • /
    • 2023
  • In this study, the effects of heat treatment on the nano-scale creep behavior of CoCrFeMnNi high-entropy alloy (HEA) processed by high-pressure torsion (HPT) was investigated through nanoindentation technique. Nanoindentation experiments with a Berkovich indenter were performed on HPT-processed alloy subjected to heat treatment at 450℃, revealing that the hardness of the HPT-processed alloy (HPT sample) significantly increased with the heat treatment time. The heat treatment-induced microstructural change in HPT-processed alloy was analyzed using transmission electron microscopy, which showed the nano-sized Cr-, NiMn-, and FeCo-rich phases were formed in the HPT-processed alloy subjected to 10 hours of heat treatment (HPT+10A sample). To compare the creep behavior of HPT and HPT+10A samples, constant load nanoindentation creep experiments were performed using spherical indentation indenters with two different radii. It was revealed that the predominant mechanism for creep highly depended on the applied stress level. At low stress level, both HPT and HPT+10A samples were dominated by Coble creep. At high stress level, however, the mechanism transformed to dislocation creep for HPT sample, but continued to be Coble creep for HPT+10A sample, leading to higher creep resistance in the HPT+10A sample.

Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC) (수축저감제의 종류 및 혼입률에 따른 변형경화형 시멘트복합체의 역학적 특성)

  • Han, Seung-Ju;Jang, Seok-Joon;Khil, Bae-Su;Choi, Mu-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • This research investigates the effects of shrinkage reducing agent (SRA) on the mechanical behavior of strain-hardening cement composite (SHCC). SHCC material with specified compressive strength of 50 MPa was mixed and tested in this study. All SHCC mixes reinforced with volume fraction of 2.2% polyvinyl alcohol (PVA) fiber and test variables are type and dosage of shrinkage reducing agents. The shrinkage reducing materials used in this study are phase change material as the thermal stress reducing materials that have the ability to absorb or release the heat. The effect of SRA was examined based on the change in length caused by shrinkage and hardened mechanical properties, specially compressive, tensile and flexural behaviors, of SHCC material. It was noted that SRA reduces change in length caused by shrinkage at early age. SRA can also improve the tensile and flexural strengths and toughness of SHCC material used in this study.

Analysis of the Physiological Signal Measured by Oriental Medicine Instruments in the View of the Rule of Promoting and Counteracting Relation of the Five Evolutive Phases (한방기기(韓方機器)로 측정(測定)한 생리신호(生理信號)의 오행(五行) 생극제화규율적(生剋制化規律的) 해석(解析))

  • Jang, K.S.;Choi, J.W.;Jean, C.S.;Na, C.S.;So, C.H.
    • Korean Journal of Oriental Medicine
    • /
    • v.2 no.1
    • /
    • pp.84-103
    • /
    • 1996
  • The physiological signals measured by Oriental Medicine instruments have been analyzed quantitatively in the view of the rule of promoting and counteracting relation of five evolutive phases theory. We tried to reduce the physiological signals measured by EAV(Elec-tro-Acupuncture according to Voll) and IR thermography to the representation of five evelutive phases. The EAV index and local skin temperature on acupuncture points of each phases measured and normalized so that the total value of five phases became unity. We assumed that the normalized EAV index and local skin temperature mean the deficiency or excess of Qi for each phases. The state of Qi distribution for each phases were approximately agree with the diagnostic pattern of O. M. doctor. Taking account of the Qi distribution state of·or the five evolutive phases, we performed a proper needle insertion on acupuncture points to induce the distinct change of Qi for each phases. We compared the measured results with the predictions of Qi variation by the rule of pro- moting and counteracting relation over the five evolutive phases. For all cases, the variation of Qi in the own phase on which a needle insertion was performed were exactly same to the theoretical prediction and partial agreement was shown for the other four phases. The same analysis was carried to the results of skin temperature measurements at accupoints. We found that the local skin temperature at accupoints of each phases shelved a finite change by the needle insertion and the behavior- of its change were strongly correlated to the rule of promoting and counteracting relation of five evolutive phases.

  • PDF

Analysis on the Frumkin Adsorption Isotherm of the Over-Potentially Deposited Hydrogen (OPD H) at the Polycrystalline Ni | Alkaline Aqueous Electrolyte Interface Using the Phase-Shift Method

  • Chun Jang H.;Jeon Sang K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.146-151
    • /
    • 2001
  • The Frumkin adsorption isotherm of the over-potentially deposited hydrogen (OPD H) for the cathodic $H_2$ evolution reaction (HER) at the poly-Ni|0.05M KOH aqueous electrolyte interface has been studied using the phase-shift method. The behavior of the phase shift $(0^{\circ}\leq{\phi}\leq90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1\geq{\theta}\geq0)$ at the interface. The phase-shift method, i.e., the Phase-shift profile $(-{\phi}\;vs.\;E)$ for the optimum intermediate frequency, can be used as a new method to estimate the Frumkin adsorption isotherm $(\theta\;vs.\;E)$ of the OPD H for the cathodic HER at the interface. At the poly-Ni|0.05M KOH aqueous electrolyte interface, the rate (r) of change of the standard free energy of the OPD H with $\theta$, the interaction parameter (g) for the Frumkin adsorption isotherm, the equilibrium constant (K) for the OPD H with $\theta$, and the standard free energy $({\Delta}G_{\theta})$ of the OPD H with ${\theta}$ are $24.8kJ mol^{-1},\;10,\;5.9\times10^{-6}{\leq}K{\leq}0.13,\;and\;5.1\leq{\Delta}G_{\theta}\leq29.8kJ\;mol^{-1}$. The electrode kinetic parameters $(r,\;g,\;K,\;{\Delta}G_{\theta})$ depend strongly on ${\theta} (0{\leq}{\theta}{\leq}1)$.

Synthesis of Li2MnSiO4 by Solid-state Reaction (고상반응법을 이용한 Li2MnSiO4 합성)

  • Kim, Ji-Su;Shim, Joong-Pyo;Park, Gyung-Se;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.398-402
    • /
    • 2012
  • Synthesis of $Li_2MnSiO_4$ was attempted by the conventional solid-state reaction method, and the phase formation behavior according to the change of the calcination condition was investigated. When the mixture of the three source materials, $Li_2O$, MnO and $SiO_2$ powders, were used for calcination in air, it was difficult to develop the $Li_2MnSiO_4$ phase because the oxidation number of $Mn^{2+}$ could not be maintained. Therefore, two-step calcination was applied: $Li_2SiO_3$ was made from $Li_2O$ and $SiO_2$ at the first step, and $Li_2MnSiO_4$ was synthesized from $Li_2SiO_3$ and MnO at the second step. It was easy to make $Li_2MnSiO_3$ from $Li_2O$ and $SiO_2$. $Li_2MnSiO_4$ single phase was developed by the calcination at $900^{\circ}C$ for 24 hr in Ar atmosphere as the oxidation of $Mn^{2+}$ was prevented. However, the $Li_2MnSiO_4$ was ${\gamma}-Li_2MnSiO_4$, one of the polymorph of $Li_2MnSiO_4$, which could not be used as the cathode materials in Li-ion batteries. By applying the additional low temperature annealing at $400^{\circ}C$, the single phase ${\beta}-Li_2MnSiO_4$ powder was synthesized successfully through the phase transition from ${\gamma}$ to ${\beta}$ phase.

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.

Thermotropic Liquid Crystalline Behavior of Poly[1-{4-(4'-nitrophenylazo)phenoxycarbonylalkanoyloxy}ethylene]s (폴리[1-{4-(4'-니트로페닐아조)페녹시카보닐알카노일옥시}에틸렌]들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.489-496
    • /
    • 2008
  • The thermotropic liquid crystalline behavior of a homologous series of poly[1-{4-(4' nitrophenylazo) phenoxycarbonylalkanoyloxy}ethylene]s (NAPEn, n = $2{\sim}8$,10, the number of methylene units in the spacer) have been investigated. All of the homologues formed monotropic nematic phases. The glass transition temperatures decreased with n. This is attributed to a plasticization of the backbone by the side chains. The isotropic-nematic phase transition temperatures decreased with increasing n up to 7 and showed the odd-even effect. However it became almost constant when n is more than 7. This behavior was rationalized in terms of the change in the average shape of the side chain on varing the parity of the spacer. This rationalization also accounts for the observed variation of the entropic gain for the clearing transition. The mesophase properties of NAPEn were entirely different from those reported for the polymers in which the azobenzene groups are attached to polyacrylate, polymathacrylate, and polystyrene backbones through polymethylene spacers. The results indicate that the mode of chemical linkage of the side group with the main chain plays an important role in the formation, stabilization, and type of mesophase.

Experimental Study on N2 Impurity Effect in the Pressure Drop During CO2 Mixture Transportation (CO2 파이프라인 수송에서의 N2 불순물이 압력강하에 미치는 영향에 대한 실험적 연구)

  • Cho, Meang-Ik;Huh, Cheol;Jung, Jung-Yeul;Baek, Jong-Hwa;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.67-75
    • /
    • 2012
  • Carbon-dioxide capture and storage (CCS) process is consisted by capturing carbon-dioxide from large point source such as power plant and steel works, transporting and sequestrating captured $CO_2$ in a stable geological structure. During CCS process, it is inevitable of introducing impurities from combustion, capture and purification process into $CO_2$ stream. Impurities such as $SO_2$, $H_2O$, CO, $N_2$, Ar, $O_2$, $H_2$, can influence on process efficiency, capital expenditure, operation expense of CCS process. In this study, experimental apparatus is built to simulate the behavior of $CO_2$ transport under various impurity composition and process pressure condition. With this apparatus, $N_2$ impurity effect on $CO_2$ mixture transportation was experimentally evaluated. The result showed that as $N_2$ ratio increased pressure drop per mass flow and specific volume of $CO_2-N_2$ mixture also increased. In 120 and 100 bar condition the mixture was in single phase supercritical condition, and as $N_2$ ratio increased gradient of specific volume change and pressure drop per mass flow did not change largely compared to low pressure condition. In 70 bar condition the mixture phase changed from single phase liquid to single phase vapor through liquid-vapor two phase region, and it showed that the gradient of specific volume change and pressure drop per mass flow varied in each phase.

A study on the Counseling Process and Counseling Techniques Applying Freud's Psychoanalysis (프로이트 정신분석을 적용한 상담과정과 상담기법에 관한 연구)

  • Lee, Pyung-Hwa;Kim, Bo-Ki
    • Industry Promotion Research
    • /
    • v.7 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • This study is based on Freud's psychoanalysis and intends to deal with the actual psychoanalytic counseling applied to it. In particular, I would like to study the counseling process and counseling techniques. The research results are as follows. The counseling process goes through four stages: initiation, transfer development, training, and transfer resolution as follows after selecting a client and constructing a counseling situation. In the beginning phase, the client listens to important past histories. In the metastasis development stage, it is from the time when metastasis appears. The training phase is the phase in which the client's insight is translated into real life to bring about change. The transfer resolution stage is the period when transfer analysis and interpretation are completed. Counseling techniques include free association, empathy, resistance, transference and countertransference, and interpretation. Free association is a key technique in psychoanalytic therapy and plays an important role in maintaining the analytical framework. Empathy is the ability of the therapist to identify herself with the client and the ability of the therapist to convey the empathic experience to the client itself is a key mechanism for change. Resistance refers to any behavior in which the client does not cooperate with counseling. Transference and countertransference are the main techniques of psychoanalysis. This is because the psychoanalyst induces and resolves the transference of the client during the treatment process. Interpretation refers to the technique of responding verbally in order to understand the needs, meanings, and motives hidden behind the client's thoughts, feelings, and actions. In conclusion, the counseling process of psychoanalytic counseling refers to the purpose of effective counseling by selecting a client and constructing a counseling situation. In addition, the principles of psychoanalysis in counseling techniques are applied to treatment procedures that vary according to the nature of the case, and can be variably applied while treating the same client.

A Study on the Phase Separation and Mechanical Properties of Wood Flour-Polypropylene Composites (목분-폴리프로필렌 복합체의 상분리 및 기계적 특성에 관한 연구)

  • Lee, Kyoung Hee;Byon, Sungkwang
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.216-220
    • /
    • 2013
  • The phase separation in Wood Flour-Polymer Composite (WPC) was investigated and the reasons for change in mechanical properties with the content of wood flour were explored. The wood flour-polypropylene composite samples with different wood flour contents were prepared. From differential scanning calorimetry (DSC) thermograms of WPC samples, the trend of crystallinity and melting temperature ($T_m$) were analyzed. The crystallinity and melting temperature increased and then decreased as the content of wood flour increased. From these results, it was confirmed that at the low wood flour content the wood flours were dispersed into the polypropylene matrix but at the high wood flour content, the phase separation between polymer and wood flour phases appeared. The tensile strength of WPC samples was continuously decreased with the increase of wood flour content. At a low wood flour content, the low interfacial bonding and the decrease in crystallinity were the main reasons for the decrease in tensile strength with the increase of wood flour content. At a high wood flour content, the decrease in tensile strength resulted from the interfacial defects between the polymer and wood flour phases. The impact strength of the WPC sample showed the maximum behavior with the content of wood flour. At a low wood flour content, the impact strength was enhanced owing to the decrease in brittleness, which results from the decrease in crystallinity. At a high wood flour content, however, the impact strength decreased due to phase separation.