• Title/Summary/Keyword: Phase and amplitude control

Search Result 221, Processing Time 0.042 seconds

Design of a CMOS W VCO with Automatic Amplitude Control (자동진폭조절 기능을 갖는 CMOS IF VCO 설계)

  • 김유환;문요섭;이종렬;박종태;유종근
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.145-148
    • /
    • 2002
  • In this paper, a voltage controlled oscillator (VCO) with automatic amplitude control is designed using a 0.35${\mu}{\textrm}{m}$ CMOS process. A cross-coupled PMOS pair is used for a negative resistance to compensate for the losses in the LC resonator, and an automatic\ulcorner amplitude control function is adapted to provide constant output power independent of the Q-factor of the LC resonator. The designed VCO operates in the 200MHz to 550MHz frequency range using different external resonators. The simulated phase noise is -128 dBc/Hz at 100KHz offset from the carrier frequency of 260MHz. It dissipates 0.㎽ from a 3V power supply. The area is 300${\mu}{\textrm}{m}$ x1201${\mu}{\textrm}{m}$.

  • PDF

ft Study on the Dither Random Noise for Improving the Bias Stability of Ring Laser Gyroscope (링레이저 자이로의 바이어스 안정도 개선을 위한 몸체진동 잡음 연구)

  • Shim, Kyu-Min;Kim, Cheon-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1065-1073
    • /
    • 2006
  • In this paper we confirm the relation between the phases and phase errors of the beat signal at the lock-in region of the amplitude modulation type ring laser gyroscope by numerical calculation. Based on this facts, we, numerically, study the envelopes and magnitudes of the dither noise for statistically summing out the beat signal phase error, and we, experimently, confirm these numerical results. As a result, we find that the dither noise requires the increase gradient and the decrease gradient of the dither amplitudes, and those gradients should be combined with white noise. The magnitude of the dither noise which is satisfied with these requirements should be more than 5 percents of the average dither amplitude.

Power Current Control of a Resonant Vibratory Conveyor Having Electromagnetic Drive

  • Despotovic, Zeljko V.;Ribic, Aleksandar I.;Sinik, Vladimir M.
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.677-688
    • /
    • 2012
  • The vibratory conveyors with electromagnetic drive are used for performing gravimetric flow of granular materials in processing industry. By realizing free vibrations of variable intensity and frequency over a wide range through application of the electromagnetic actuator, suitable power converter, and the corresponding controller, continuous conveyance of granular materials have been provided for various operating conditions. Standard power output stages intended for control of vibratory conveyance using thyristors and triacs. Phase angle control can only accomplish tuning of amplitude oscillations, but oscillation frequency cannot be adjusted by these converters. Application of current controlled transistor converters enables accomplishing the amplitude and/or frequency control. Their use implies the excitation of a vibratory conveyor independent of the supply network frequency. In addition, the frequency control ensures operation in the region of mechanical resonance. Operation in this region is favourable from the energy point of view, since it requires minimal energy consumption. The paper presents a possible solution and advantages of the amplitude-frequency control of vibratory conveyors by means of a current controlled power converter.

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

Improved the Noise Immunity of Phase-Locked Loop

  • Intachot, Terdsak;Panaudomsup, Sumit;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1643-1647
    • /
    • 2003
  • This paper, we propose a new high noise immunity phase-locked loop(PLL) which can suppress the high incident noise coupling with large amplitude and long period to the input frequency of PLL and keeps constant frequency and phase of the VCO output for providing the high stability distribution clock pulse.

  • PDF

A Study on a Novel PMSM Sensorless Control Scheme Based on Back-emf Phase (역기전력 위상을 기초로 한 PMSM의 새로운 센서리스 제어기법에 관한 연구)

  • 이정준;박성준;황상문;정의봉;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.579-586
    • /
    • 2002
  • With increase of servo motor in industrial and home application, a number of papers related to PMSM control have been researched. Among them, sensorless control schemes are especially concerned in a view point of their cost reduction. In a conventional approach, a rotor position is generally estimated by the integration of estimated rotor speed. In this method, because of their tight relationship between the amplitude of back-emf and rotor position, it is somewhat difficult to find two parameters at the same time. To solve this problem, a novel sensorless control scheme is proposed. It utilizes a back-emf normalization, so that it does not require the variables related with the amplitude of back-emf. The validity of the proposed control scheme is verified through experimental results.

A Direct Torque Control System for Improving Speed Response of Five-Phase Induction Motor (5상 유도전동기의 속도응답특성 개선을 위한 직접토크제어 시스템)

  • Kim, Min-Huei;Choi, Sung-Un
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • This paper propose a improved direct torque control(DTC) system for improving operation of five-phase squirrel-cage induction motor(IM). A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings and the produced back-electromotive force(EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents, there is necessary to controlled 3rd harmonic current. Also a DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter drive system. For presenting the superior performance of the proposed DTC, experimental results of speed control are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[hp] IM.

Characteristics of a 6-Step Inverter red Brushless DC Motor by Inverter Input Voltage and Phase Shift Control (6스텝 전압형 인버어터의 입력 전압의 크기과 위상 제어에 따른 브러시리스 직류 전동기의 특성 해석)

  • Kim, Kyu-Chan;Woo, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.49-52
    • /
    • 1987
  • In this work, the characteristics of a six step inverter fed brushless DC motor are analyzed and the control of amplitude of inverter input voltage and phase shift of a six step inverter is discussed. The effects of the motor performance, efficiency and power factor, are studied.

  • PDF

Simulation of three Phase PWM Boost converter (단상제어형 3상 PWM 승압용 컨버터의 시뮬레이션)

  • Kang, W.J.;Kim, S.D.;Chun, J.H.;Lee, K.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2668-2670
    • /
    • 1999
  • In the past, the PWM converter had a large switching loss by hard switching and difficult to high frequency operation. The resonance converter to decrease the switching loss and EMI is required the frequency control and needed to reduce the voltage or current stress at each parts. So, this paper propose the 3-phase boost converter and the method to compensated input power factor by control the amplitude - an instantaneous value of the DC inductor current -and control the switching frequency that a modulation error by the ripple of the DC inductor current. The proposed 3-phase PWM boost converter of single phase control type can takes higher capacity and compensate the power factor by using Feed back controller at each phase for the existing 3-phase bridge rectifier type. Moreover the 3-phase full bridge type using the rectifier at each 3-phase circuit will be small size reactor and compensate input power factor by minimize harmonic components of each phase.

  • PDF

Rotor position detection of bifilar-wound hybrid stepping motors by phase current measurement (상전류 측정에 의한 복권형 하이브리드 스테핑 전동기의 회전자 위치 검출)

  • Kim, Kyu-Hui;You, Jeong-Bong;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.619-625
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by modeling the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. We show that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF