• Title/Summary/Keyword: Phase and Magnitude

Search Result 850, Processing Time 0.023 seconds

A System Modeling and Controller Design Method Using Discrete Fourier Transform (이산 푸리에변환을 이용한 모델링과 제어기 설계 방법)

  • Shim, Kwan-Shik;Ahn, Hyun-Jin;Nam, Hae-Kon;Lim, Yeong-Chul;Kim, Eui-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.34-43
    • /
    • 2012
  • This paper describes system modeling and controller design method in the measured signal by discrete Fourier transform. Transfer function of the second order system is estimated by the dominant parameter which is computed in the magnitude and the phase of Fourier spectrum of the measured signal. In addition, the controller was designed by the estimated transfer function, and the results were compared. The proposed estimation method of transfer function contains only a very simple mathematical process. Therefore, it is effective to design the controller in the measured signal when the output of the system contains the characteristics of complex exponential functions case. The proposed method was applied on Op-Amp system to verify the efficiency and the reliability. The results show that the proposed algorithms are highly applicable to the system modeling and controller design in the measured data.

The Identification of Generation Mechanism of Noise and Vibrtaion and Transmission Characteristics for Engine System - The Source Identification and Noise Reduction of Compartment by Multidimensional Spectral Analysis and Vector Synthesis Method - (엔진의 소음.진동발생기구 및 전달특성 규명 -다차원해석법과 벡터합성법에 의한 차실소음원 규명 및 소음저감 -)

  • O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1127-1140
    • /
    • 1997
  • With the study for identifying the transmission characteristics of vibration and noise generated by operating engine system of a vehicle, recently many engineers have studied actively the reduction of vibration and noise inducing uncomfortableness to the passenger. In this study, output noise was analyzed by multi-dimensional spectral analysis and vector synthesis method. The multi-dimensional analysis method is very effective in case of identification of primary source, but this method has little effect on suggestion for interior noised reduction. For compensation of this, vector synthesis method was used to obtain effective method for interior noise reduction, after identifying primary source for output noise. In this paper, partial coherence function of each input was calculated to know which input was most coherent to output noise, then with simulation of changes for input magnitude and phase by vector synthesis diagram, the trends of synthesized output vector was obtained. As a result, the change of synthesized output vector could be estimated.

Pattern recognition using AC treatment for semiconductor gas sensor array

  • Nguyen, Viet-Dung;Joo, Byung-Su;Huh, Jeung-Su;Lee, Duk-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1549-1552
    • /
    • 2003
  • Semiconductor gas sensor using tin oxide as sensing material has been used to detect gases based on the fact that impedance of the sensing material varies when the gas sensor is exposed to the gases. This variation comprises of two parts. The first one is variation in resistance of the sensing material and the other is expressed in terms of the sensor capacitance variation. Normally, only variation of the sensor resistance is considered. In this paper, using AC measurement with a capacitor-coupled inverting amplifier circuit, both changes in the sensor resistance and variations in the sensor capacitance were investigated. These characteristics were represented as magnitude gain and phase shift of AC signal at a specific frequency after passing it through the sensor and the designed circuit. A two-stage artificial neural network, which utilized the information above, was employed to identify and quantify three combustible gases: methane, propane and butane. The network outputs were approximately proportional to concentrations of test gases with reasonable level of error.

  • PDF

A Biomechanical Analysis of Lower Extremity Kinematics and Kinetics During Level Walking (평지를 걸어갈 때 하지운동과 작용하는 하중에 대한 생체역학적 해석)

  • Son, Kwon;Choi, Gi-Yeong;Chung, Min-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2101-2112
    • /
    • 1994
  • A two-dimensional biomechanical model was developed in order to calculated the lower extremity kinematics and kinetics during level walking. This model consists of three segments : the thigh, calf, and foot. Each segment was assumed to be a rigid body ; its motion to be planar in the sagittal plane. Five young males were involved in the gait experiment and their anthropometric data were measured for the calculation of segmental masses and moments of inertial. Six markers were used to obtain the kinematic data of the right lower extremity for at least three trials of walking at 1.0m/s, and simultaneously a Kistler force plate was used to obtain the foot-floor reaction data. Based on the experimental data acquired for the stance phase of the right foot, calculated vertical joint forces reached up to 0.91, 1.05, and 1.11 BW(body weight) at the hip, the knee, the ankle joints, respectively. The flexion-extension moments reached up to 69.7, 52.3, and 98.8 Nm in magnitude at the corresponding three joints. It was found that the calculated joint loadings of a subject were statistically the same for all his three trials, but not the same for all five subjects involved in the gait study.

A Study of Spray Characteristics for the Shape of Nozzle by Phase Doppler Analyzer (PDPA를 이용한 노즐의 형상에 따른 분무 특성의 연구)

  • Hwang, S. S.;Lee, H. S.;Kim, J.;Lee, B. G.;Kim, J. C.;Chun, U. H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.199-210
    • /
    • 1998
  • The skill that utilizes atomization of the liquid has been widely used in the field of industry and engineering. Though there are dozens of methods to make atomization, the pressure type injection nozzle is frequently used in washing of parts, pastourization and painting because it has relatively simple system. This study is to reveal the characteristics of atomizing formed by three different types of the pressure type injection nozzle. We measured velocity and diameter of droplet to compare and analyze characteristic of each nozzle. In case of velocity, atomization of hollow-cone nozzle is irregular than others and change of radial direction is especially large. Atomization of flat nozzle is nearly uniform. In case of diameter, atomization of hollow-cone nozzle is increased rapidly, as measurement point become more distant from the center of nozzle. Atomization of flat nozzle has the most fixed magnitude. Accordingly, full-cone nozzle can be used irrespective of the form of subject and hollow-cone nozzle is proper to the occasion to spray large and smooth subject. Also, flat nozzle is proper to the occasion to spray a part of subject and long groove.

  • PDF

Gender differences in the impact magnitude and its attenuation during running (달리기 시 신체 충격 크기와 흡수의 성차)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.91-109
    • /
    • 2005
  • The goal of this research was to determine whether gender differences exist in impact force and impact shock variables at stance phase during a preferred running. Ten male and ten female subjects volunteered to participate in this study. Impact force was quantified by using a surface-mounted force plate. In addition, Axial accelerations of the tibias and mouth were measured using low-mass accelerometers. Comparison of parameters relating to impact force and impact shock which attained from time domain, and impact shock parameters which were analyzed in frequency domain were made between genders. The conclusions based on results were as follows; 1. There were no significantly differences in impact force, mouth and tibia acceleration peak in time domain between two genders. 2. The male group was greater in impact shock peak of PSD(power spectral density) at the tibia than female group(p<.05), but no differences in active impact of PSD at the tibia and the mouth between two genders. 3. Female subjects exhibited that a peak of impact shock attenuation analyzed in frequency domain moved toward a high frequency, but no difference in time domain between two genders.

Optimum Locations of Passe Conductor Loops for Magnetic Field Mitigation of Transmission Line using GA (유전 알고리듬을 이용한 송전선로 자계 저감용 도체루프의 최적 위치 선정)

  • Shin Myong-Chul;Kim Jong-Hyung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.234-241
    • /
    • 2005
  • The performance of passive conductor loop (hereinafter 'loop') method which is used to mitigate the magnetic field around overhead power transmission line is dependent on its configuration and installed location, which are affected by installation conditions of the loops such as objective areas and levels of magnetic field mitigation. Thus, because the design problem of loops is difficult and cumbersome by variety of their configuration and complexity of magnetic coupling mechanism, it is need to be formulated as a computer-based optimum problem to determine the most effective and reasonable loop model satisfying the installation conditions. In this paper, the optimum locations of the multi-wired multiple loops including series reactance compensations are searched by using the genetic algorithm (GA) to mitigate effectively the magnetic fields of relatively near points or far points from transmission line at Am height, and the magnetic fields mitigation characteristics of each loop are analyzed in the view of magnitude, direction and phase of cancellation fields by polarized vector concept to identify their adequacy and rationality for the installation objectives.

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

Cell Cycle Regulation and Induction of Apoptosis by β-carotene in U937 and HL-60 Leukemia Cells

  • Upadhyaya, K.R.;Radha, K.S.;Madhyastha, H.K.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1009-1015
    • /
    • 2007
  • In this communication, we report the efficacy of $\beta$-carotene towards differentiation and apoptosis of leukemia cells. Dose ($20{\mu}M$) and time dependence (12 h) tests of $\beta$-carotene showed a higher magnitude of decrease (significance p < 0.05) in cell numbers and cell viability in HL-60 cells than U937 cells but not normal cell like Peripheral blood mononuclear cell (PBMC). Microscopical observation of $\beta$-carotene treated cells showed a distinct pattern of morphological abnormalities with inclusion of apoptotic bodies in both leukemia cell lines. When cells were treated with $20{\mu}M$ of $\beta$-carotene, total genomic DNA showed a fragmentation pattern and this pattern was clear in HL-60 than U937 cells. Both the cell lines, on treatment with $\beta$-carotene, showed a clear shift in $G_1$ phase of the cell cycle. In addition the study also revealed anti-oxidant properties of $\beta$-carotene since there was reduction in relative fluorescent when treated than the control at lower concentration. Collectively this study shows the dual phenomenon of apoptosis and differentiation of leukemia cells on treatment with $\beta$-carotene.

Effects of Oil and Internally Finned Tubes on the Performance of the Air-Conditioning Unit (전열관 형상과 냉동기유 효과를 고려한 공조기기의 성능예측)

  • Yun, J.Y.;Lee, K.S.;Lee, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.388-398
    • /
    • 1994
  • Computer simulation model for predicting more accurately the heat transfer performance of the evaporator and condenser which have significantly affected on the performance of air-conditioner has been suggested. In this model oil and micro-fin tube used in a actual unit are considered to simulate the more realistic case. The effects of oil and micro-fin tube on the performance of an air-conditioner have been investigated. It is found that the present model requires higher pressure than the existing model due to the characteristics of the tube considered. However, it turns out that the present model is very close to an actual cycle. As the amount of oil inside the tube increases, condensation heat transfer coefficient shows a linear decrease irrespective of a kind of oil, while evaporation heat transfer coefficient increases slightly in the oil with low viscosity and decreases exponentially in the oil with high viscosity. Pressure drop in both evaporator and condenser increases linearly irrespective of a kind of oil. It is also found that the effect of the variation of oil concentration on the magnitude of two-phase region is negligible.

  • PDF