• 제목/요약/키워드: Phase Transition Temperature

검색결과 882건 처리시간 0.025초

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

A Mechanistic Study on the Early Stage-Events Involved in Low Temperature Stress in Clamydomonas reinhardtii (Clamydomonas reinhardtii의 냉해 초기과정에 관한 기작론적 연구)

  • Cho, Hyun-Soon;Kim, Chang-Sook;Jung, Jin
    • Applied Biological Chemistry
    • /
    • 제37권6호
    • /
    • pp.433-440
    • /
    • 1994
  • The exposure of Clamydomonas reinhardtii to low temperatures resulted in an accumulation of cellular pyruvate that dissipated when the chilled cells returned to ambient temperature. The dissipation of pyruvate accumulation was accompanied by an increase in the production level of superoxide radicals $(O_2^-)$ in cells. The formation of $O_2^-$ at an excessive level during the post-chilling period was apparently countered by a substantial activation of superoxide dismutase (SOD). All these results are similar to those observed previously in rice seedlings subjected to the cold-treatment, implicating that a common mechanism is probably underlying for the primary processes of chilling injury both in higher plants and in algae. It was also observed that the activation of Mn-containing SOD contributes the major share in the increase of SOD activity of whole algal cells. Because Mn-SOD is present only in mitochondria, the observation corroborates the concept that the $O_2^-$ scavenging enzyme would be induced to cope with the cold treatment-caused adverse situation in mitochondria where the toxic active oxygen is produced at rates far exceeding the normal rate.

  • PDF

Electrically Controllable Asymmetric Split-Loop Terahertz Resonator with Outer Square Loop (전기적 제어 가능한 외곽 사각 고리 추가형 테라헤르츠 비대칭 분리고리공진기)

  • Park, Dae-Jun;Ryu, Han-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • 제28권2호
    • /
    • pp.59-67
    • /
    • 2017
  • This paper proposes an asymmetric split-loop resonator with an outer square loop (ASLR-OSL), which can actively control terahertz wave transmission properties while maintaining a high-Q-factor of the asymmetric split-loop resonator (ASLR). An added outer square loop is designed to play the roles of both a metamaterial and a micro-heater, which can control the temperature through a directly applied bias voltage. A vanadium dioxide ($VO_2$) thin film, which exhibits an insulator-metal phase transition with temperature change, is used to control the transmission properties. The proposed ASLR-OSL shows transmission properties similar to those of the ASLR, and they can be successfully controlled by directly applying bias voltage to the outer square loop. Based on these results, an electrically controllable terahertz high-Q metamaterial could be achieved simply by adding a square loop to the outside of a well-known high-Q metamaterial.

Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane (GAP 및 GAP-co-BO Copolymer계 에너지 함유 열가소성 폴리우레탄의 합성 및 특성)

  • Seol, Yang-Ho;Kweon, Jeong-Ohk;Kim, Yong-Jin;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • 제30권6호
    • /
    • pp.673-680
    • /
    • 2019
  • GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.

Effect of Drying Methods on Physicochemical Properties of Agar (건조 방법이 한천의 물리${\cdot}$화학적 특성에 미치는 영향)

  • KIM Oc-Do;KIM Yuck-Yong;LEE Nahm-Gull;CHO Young-Je;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제29권5호
    • /
    • pp.681-688
    • /
    • 1996
  • To investigate the effort of drying methods on the physicochemical properties of agar, gel strength, viscosity, melting and setting point, and phase transition by differential scanning calorimetery (DSC) during its heating were determined. In addition the structural differences of agar powder by scanning electron microscope (SEM) was examined. The most shortest onset temperature of gel strength increase was extruding method among any other methods. Viscosity of agar with hot air method, 400.00 cps at $45^{\circ}C$, was markedly increased, but with spraying and extruding ones were little change. The melting and setting point, and the temperature for maximum endothermic and enthalpy for agar with extruding one, $80.01^{\circ}C,\;36.05^{\circ}C\;and\;61.72^{\circ}C,\;0.73\;cal/g$, respectively, were lowest among the drying ones. But in the case of reheating after gelling, there were little change in all methods. Observing the surface structure of agar with SEM, extruding method showed the most unstable with absorptive property.

  • PDF

A study on the interfacial reactions between electroless Ni-P UBM and 95.5Sn-4.0Ag-0.5Cu solder bump (무전해 Ni-P UBM과 95.5Sn-4.0Ag-0.5Cu 솔더와의 계면반응 및 신뢰성에 대한 연구)

  • ;;Sabine Nieland;Adreas Ostmann;Herbert Reich
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.85-91
    • /
    • 2002
  • Even though electroless Hi and Sn-Ag-Cu solder are widely used materials in electronic packaging applications, interfacial reactions of the ternary Ni-Cu~Sn system have not been known well because of their complexity. Because the growth of intermetallics at the interface affects reliability of solder joint, the intermetallics in Ni-Cu-Sn system should be identified, and their growth should be investigated. Therefore, in present study, interfacial reactions between electroless Ni UB7f and 95.5Sn-4.0Ag-0.5Cu alloy were investigated focusing on morphology of the IMCs, thermodynamics, and growth kinetics. The IMCs that appear during a reflow and an aging are different each other. In early stage of a reflow, ternary IMC whose composition is Ni$_{22}$Cu$_{29}$Sn$_{49}$ forms firstly. Due to the lack of Cu diffusion, Ni$_{34}$Cu$_{6}$Sn$_{60}$ phase begins growing in a further reflow. Finally, the Ni$_{22}$Cu$_{29}$Sn$_{49}$ IMC grows abnormally and spalls into the molten solder. The transition of the IMCs from Ni$_{22}$Cu$_{29}$Sn$_{49}$ to Ni$_{34}$Cu$_{6}$Sn$_{60}$ was observed at a specific temperature. From the measurement of activation energy of each IMC, growth kinetics was discussed. In contrast to the reflow, three kinds of IMCs (Ni$_{22}$Cu$_{29}$Sn$_{49}$, Ni$_{20}$Cu$_{28}$Au$_{5}$, and Ni$_{34}$Cu$_{6}$Sn$_{60}$) were observed in order during an aging. All of the IMCs were well attached on UBM. Au in the quaternary IMC, which originates from immersion Au plating, prevents abnormal growth and separation of the IMC. Growth of each IMC is very dependent to the aging temperature because of its high activation energy. Besides the IMCs at the interface, plate-like Ag3Sn IMC grows as solder bump size inside solder bump. The abnormally grown Ni$_{22}$Cu$_{29}$Sn$_{49}$ and Ag$_3$Sn IMCs can be origins of brittle failure.failure.

  • PDF

Poloxamer 407 Hydrogels for Intravesical Instillation to Mouse Bladder: Gel-Forming Capacity and Retention Performance

  • Kim, Sang Hyun;Kim, Sung Rae;Yoon, Ho Yub;Chang, In Ho;Whang, Young Mi;Cho, Min Ji;Kim, Myeong Joo;Kim, Soo Yeon;Lee, Sang Jin;Choi, Young Wook
    • The Korean Journal of Urological Oncology
    • /
    • 제15권3호
    • /
    • pp.178-186
    • /
    • 2017
  • Purpose: Poloxamer 407 (P407) thermo-sensitive hydrogel formulations were developed to enhance the retention time in the urinary bladder after intravesical instillation. Materials and Methods: P407 hydrogels (P407Gels) containing 0.2 w/w% fluorescein isothiocyanate dextran (FD, MW 4 kDa) as a fluorescent probe were prepared by the cold method with different concentrations of the polymer (20, 25, and 30 w/w%). The gel-forming capacities were characterized in terms of gelation temperature (G-Temp), gelation time (G-Time), and gel duration (G-Dur). Homogenous dispersion of the probe throughout the hydrogel was observed by using fluorescence microscopy. The in vitro bladder simulation model was established to evaluate the retention and drug release properties. P407Gels in the solution state were administered to nude mice via urinary instillation, and the in vivo retention behavior of P407Gels was visualized by using an in vivo imaging system (IVIS). Results: P407Gels showed a thermo-reversible phase transition at $4^{\circ}C$ (refrigerated; sol) and $37^{\circ}C$ (body temperature; gel). The G-Temp, G-Time, and G-Dur of FD-free P407Gels were approximately $10^{\circ}C-20^{\circ}C$, 12-30 seconds, and 12-35 hours, respectively, and were not altered by the addition of FD. Fluorescence imaging showed that FD was spread homogenously in the gelled P407 solution. In a bladder simulation model, even after repeated periodic filling-emptying cycles, the hydrogel formulation displayed excellent retention with continuous release of the probe over 8 hours. The FD release from P407Gels and the erosion of the gel, both of which followed zero-order kinetics, had a linear relationship ($r^2=0.988$). IVIS demonstrated that the intravesical retention time of P407Gels was over 4 hours, which was longer than that of the FD solution (<1 hour), even though periodic urination occurred in the mice. Conclusions: FD release from P407Gels was erosion-controlled. P407Gels represent a promising system to enhance intravesical retention with extended drug delivery.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • 제34권3호
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Properties of Liquid Crystalline Polyester/Poly(ethylene 2,6-naphthalate) Blend Fibers (액정 폴리에스테르/PEN 블렌드 섬유의 성질)

  • Kim, Won;Kim, Young-Yong;Son, Jung-Sun;Yun, Doo-Soo;Han, Chul;Choi, Jae-Kon;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • 제37권4호
    • /
    • pp.244-257
    • /
    • 2002
  • A thermotropic liquid crystalline polymer(TLCP) which has flexible butylene/hexylene spacers in the main chain and a triad aromatic ester type mesogenic unit containing a naphthyl group was prepared by solution polycondensation. The in-situ composites based on poly(ethylene 2,6-naphthalate) (PEN) and a thermotropic liquid crystalline polymer(TLCP) were prepared and melt spun at different TLCP contents and different draw ratios to produce monofilaments. Blends of the TLCP with PEN were investigated in terms of thermal, mechanical properties and morphology. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature to isotropic melt from mesophase was 249℃. The blends showed well dispersed TLCP phases in the PEN matrix without macroscopic phase separation. Inclusion of TLCP in the blends decreased the cold crystallization temperature of PEN in the blend, therefore, the TLCP acts as a nucleating agent in the blend and showed good interfacial adhesion between the dispersed LCP phases and PEN matrix with domain sizes 40~50 nm in diameter and well developed fibrillation in the monofilaments. The TLCP acted effectively as a reinforcing material in the PEN matrix at the 10wt% level, it led to an increase of initial modulus up to 270% and tensile strength by 235%, while the elongation rate increasing with higher draw ratios.

Characteristics of NO Oxidation Using NaClO2 (NaClO2를 이용한 NO 산화 특성)

  • Lee, Kiman;Byun, Youngchul;Koh, Dong Jun;Shin, Dong Nam;Kim, Kyoung Tae;Ko, Kyoung Bo;Cho, Moohyun;Namkung, Won;Mok, Young Sun
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.988-993
    • /
    • 2008
  • The characteristics of NO oxidation using sodium chlorite ($NaClO_2$) powder have been investigated by a flow type packed-bed reactor, where the reaction temperature and the space velocity are varied in the range of $20{\sim}230^{\circ}C$ and $0.4-2.2{\times}10^5hr^{-1}$, respectively, and the simulation gas mixtures are composed of NO (0~200 ppm), $NO_2$ (0-200 ppm), $O_2$ (0~15%) and $H_2O$ (0~15%) within $N_2$ balance. It has been found that the oxidation efficiency of NO depends greatly on the reaction temperature, exhibiting the existence of critical reaction temperature at about $170^{\circ}C$ where the oxidation efficiency of NO is maximized and then abruptly decreased with further increase of reaction temperature, resulting in being negligible over $190^{\circ}C$. Such a behavior in the oxidation efficiency has been originated from the phase transition of $NaClO_2$ at about $170^{\circ}C$ to form $NaClO_3$, and NaCl which are chemically inactive toward the oxidation of NO. The chemical reaction of NO with $NaClO_2$ has been observed to produce $NO_2$, ClNO and $ClNO_2$, whereas that of $NO_2$ only OClO species. Additionally, we have also observed that the introduction of $O_2$ and $H_2O$ has little influence on the oxidation of NO.