• Title/Summary/Keyword: Phase Trajectory

Search Result 265, Processing Time 0.025 seconds

Feedback Shift Controller Design of Automatic Transmission for Tractors (트랙터 자동변속기 되먹임 변속 제어기 설계)

  • Jung, Gyu Hong;Jung, Chang Do;Park, Se Ha
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Nowadays automatic transmission equipped vehicles prevail in construction and agricultural equipment due to their convenience in driving and operation. Though domestic vehicle manufacturers install imported electronic controlled transmissions at present, overseas products will be replaced by domestic ones in the near future owing to development efforts over the past 10 years. For passenger cars, there are many kinds of shift control algorithms that enhance the shift quality such as feedback and learning control. However, since shift control technologies for heavy duty vehicles are not highly developed, it is possible to improve the shift quality with an organized control method. A feedback control algorithm for neutral-into-gear shift, which is enabled during the inertia phase for the master clutch slip speed to track the slip speed reference, is proposed based on the power transmission structure of TH100. The performance of the feedback shift control is verified by a vehicle test which is implemented with firmware embedded TCU. As the master clutch engages along the predetermined speed trajectory, it can be concluded that the shift quality can be managed by a shift time control parameter. By extending the proposed feedback algorithm for neutral-into-gear shift to gear change and shuttle shift, it is expected that the quality of the shift can be improved.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Flow Symmetry Breaking Effect According to Instability in Annular Combustor Part.I : Characteristics of Nozzle Arrangement (환형연소기에서 불안정성에 따른 유동적인 대칭성파괴 효과 Part I : 노즐 배치의 특성)

  • Huido Lee;Keeman Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.62-73
    • /
    • 2022
  • This research proposes a method to control combustion instability in a gas turbine combustor having an annular combustor form and compares the effect of flow symmetric braking through nozzle arrangement and the corresponding change in equivalent ratio. To this end, the symmetry breaking effect was confirmed through mode analysis of FFT, Time signal, and phase trajectory. In addition, the unstable area and the stable area were identified through mode analysis, and this was shown on the contour map. The present research shows that instability occurs when the equivalent ratio and the arrangement of the nozzles are symmetry or when the nozzles are continuously arranged, but if the arrangement and equivalent ratio are not symmetry, the combustion instability decreases dramatically even if the difference in the equivalent ratio is small.

Comparison of Ankle Angle and Lower extremity Muscle Activities Between Forefoot Strike, Heelfoot strike During the Stair Ascent Walking (계단 오름 보행 시 전족, 후족 착지 방법에 따른 하지의 근활성도와 발목 각도 비교)

  • Jun-Su Kim;Hyun-Jun Kim;Sang-Yeol Lee
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.31-41
    • /
    • 2024
  • Purpose: The purpose of this study is to compare lower extremity muscle activities and ankle joint angles between different foot strike patterns (forefoot strike, heelfoot strike) during stair ascent walking. Methods: The subjects of this study were 22 males who walked in each foot strike pattern on ascent stairs at a speed of 85 beats/min. During stair walking with the two types of foot strike patterns, the muscle activities of the rectus femoris, tibialis anterior, medial gastrocnemius, hamstring, and gluteus medius were measured. Additionally, ankle joint angles for inversion, eversion, dorsi flexion, and plantar flexion were recorded. Each participant underwent the experiment three times, with the foot strike pattern randomized. Results were averaged according to the foot strike pattern. Results: Significant differences in ankle angles were observed across all phases according to foot strike pattern. Muscle activities in the lower extremities showed significant differences in all phases except the swing 1 phase. Moreover, differences in foot movement trajectory were noted depending on the foot strike pattern. Conclusion: Walking on ascent stairs elicited differences in lower extremity muscle activities and ankle joint angles based on foot strike pattern. These findings can serve as foundational data for selecting a suitable foot strike pattern tailored to individual patient conditions when training patients in walking on ascent stairs.

The Development of an Algorithm for the Optimal Signal Control for Isolated Intersections under V2X Communication Environment (V2X 통신환경에서의 독립교차로 신호 최적제어 알고리즘 개발 연구)

  • Han, Eum;Park, Sangmin;Jeong, Harim;Lee, Chulki;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.90-101
    • /
    • 2016
  • This study was initiated to develop an algorithm for traffic condition adaptive optimal traffic signal control for isolated intersections based on the vehicle trajectory data. The algorithm determines the optimal cycle length, phase lengths, phase sequences using the data collected under V2X communication environment every second. In addition, the algorithm utilizes a traditional feature of the actuated signal control, gap-out, using traditional detector systems to consider the mixture of normal vehicles and vehicles equipped with the V2X communication function. The performance of the algorithm was compared with that of the fixed signal timing plan which was optimized with Synchro under a microscopic traffic simulation-based test bed. As a result, the overall performance, including average delay, average stop delay, the number of stops, and average speed, are improved apparently. In addition, the amount of improvement get bigger as the traffic volume in the intersection as well as the number of vehicles equipped with the V2X communication function increase.

The Production Structure of Genetic Information in South Korea (한국의 유전적 정보 생산 구조)

  • Yi Cheong-Ho
    • Journal of Science and Technology Studies
    • /
    • v.5 no.1 s.9
    • /
    • pp.55-92
    • /
    • 2005
  • The factors contributing to the formation of an important scientific concept in South Korea and its circulation in the society are the scientific knowledge that had been already formed, matured, and established in the U.S.A, Europe and Japan and has been introduced into Korea, and the institutions that have been formed during the recent modernization in South Korea. The concept of 'genetic information' cannot be an exception in this context. The concept of genetic information is the one that has been extended and intensified by the genomics and bioinformatics formed and matured through the Human Genome Projects from the former concept of inheritance or heredity within the framework of classical and molecular genetics. The purpose of this study was to find out 'how the production structure of genetic information in South Korea has been formed', under the perspective of the conceptual, epistemic, and institutional holisticity or integratedness in the concept and knowledge production structure idealized in Western advanced nations. The discourse of genetic engineering popular in the mid 1980's in South Korea has catalyzed the development of molecular biology. However, the institutional balance that had been established for the biochemistry departments in Natural Science College and Medical College was not formed between the genetic engineering and genetics departments in South Korea. Therefore, they were unable to achieve the more integrative and macro-level disciplinary impact on life sciences, largely due to institutional lack of the capable (human) genetics departments in some leading Korean colleges of Medicine. In genomics, the cutting-edge reprogramming and restructuring of the traditional genetics in the West, South Korea has not invested, even meagerly, in the infrastructure, fund, and research and development (R & D) for the Basic or First Phase of the research trajectory in the Human Genome Project. Without a minimal Basic Phase, the genomics research and development in Korea has been running more or less for the Advanced or Second Phase. Bioinformatics has started developing in Korea under a narrow perspective which regards it as a mere sub-discipline of information technology (IT). Having developed itself in parallel with genomics, bioinformatics contains its own unique logics and contents that can be both directly and indirectly connected to the information science and technology. As a result, bioinformatics reveals a defect in respect of being synergistically integrated into genetics and life sciences in Korea. Owing to the structural problem in the production, genetic information appears to be produced in a fragmented pattern in the Korean society since its fundamental base is weak and thin. A good example of the conceptual and institutional fragmentedness is that 'the genetics of individual identification' is not a normal integrated part of the Korean genetics, but a scientific practice exercised in the departments of legal medicine in a few Medical Colleges. And the environment contributing to the production structure of genetic information in South Korea today comprises 'sangmyung gonghak'(or life engineering) discourse and non-governmental organization movement.

  • PDF

Analysis of PM2.5 Case Study Burden at Chungju City (충주시 미세입자 (PM2.5) 농도특성에 대한 사례 연구)

  • Lee, Sung-Hee;Kang, Byung-Wook;Yeon, Ik-Jun;Choi, Jun-Rack;Park, Hyun-Pill;Park, Sang-Chan;Lee, Hak Sung;Cho, Byung-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.595-605
    • /
    • 2012
  • Fine particles ($PM_{2.5}$) were collected and analyzed from April 2010 through January 2011 in Chungju to investigate the characteristics of $PM_{2.5}$ and its ionic species. The annual mean concentrations of $PM_{2.5}$, ${SO_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ in the particulate phase were 40.84, 7.61, 7.14 and $3.74{\mu}g/m^3$, respectively. $PM_{2.5}$ concentrations were higher in fall and spring than in winter and summer. The elevated concentrations episodes are the main factor that enhanced the $PM_{2.5}$ concentrations in the fall. Among the major ionic species ${SO_4}^{2-}$ showed the highest concentration, followed by $NO_3{^-}$ and $NH_4{^+}$, $NO_3^-$ exhibited higher concentrations during the winter, but ${SO_4}^{2-}$ and $NH_4{^+}$ were not showed seasonal variation. The high correlations were found among $PM_{2.5}$, ${SO_4}^{2-}$, $NO_3{^-}$ and $NH_4{^+}$ during all seasons except for spring. The evaluation of backward trajectories and meteorological records show that the highest $PM_{2.5}$ concentration levels occurred during W-NW weather conditions, which influenced by the emission sources of China area. The low pollution levels generally occurred during E-S weather conditions, which influenced by the East Sea and south of the Yellow Sea. The elevated $PM_{2.5}$ mass concentrations arouse the concentration of $NO_3{^-}$, but no effects on ${SO_4}^{2-}$ and $NH_4{^+}$.

Determining the Rotation Periods of an Inactive LEO Satellite and the First Korean Space Debris on GEO, KOREASAT 1

  • Choi, Jin;Jo, Jung Hyun;Kim, Myung-Jin;Roh, Dong-Goo;Park, Sun-Youp;Lee, Hee-Jae;Park, Maru;Choi, Young-Jun;Yim, Hong-Suh;Bae, Young-Ho;Park, Young-Sik;Cho, Sungki;Moon, Hong-Kyu;Choi, Eun-Jung;Jang, Hyun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.127-135
    • /
    • 2016
  • Inactive space objects are usually rotating and tumbling as a result of internal or external forces. KOREASAT 1 has been inactive since 2005, and its drift trajectory has been monitored with the optical wide-field patrol network (OWL-Net). However, a quantitative analysis of KOREASAT 1 in regard to the attitude evolution has never been performed. Here, two optical tracking systems were used to acquire raw measurements to analyze the rotation period of two inactive satellites. During the optical campaign in 2013, KOREASAT 1 was observed by a 0.6 m class optical telescope operated by the Korea Astronomy and Space Science Institute (KASI). The rotation period of KOREASAT 1 was analyzed with the light curves from the photometry results. The rotation periods of the low Earth orbit (LEO) satellite ASTRO-H after break-up were detected by OWL-Net on April 7, 2016. We analyzed the magnitude variation of each satellite by differential photometry and made comparisons with the star catalog. The illumination effect caused by the phase angle between the Sun and the target satellite was corrected with the system tool kit (STK) and two line element (TLE) technique. Finally, we determined the rotation period of two inactive satellites on LEO and geostationary Earth orbit (GEO) with light curves from the photometry. The main rotation periods were determined to be 5.2 sec for ASTRO-H and 74 sec for KOREASAT 1.

Characteristics of Atmospheric Speciated Gaseous Mercury in Chuncheon, Korea (춘천시 대기 중 가스상 수은 종 농도 특성에 관한 연구)

  • Gan, Sun-Yeong;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.382-391
    • /
    • 2009
  • Atmospheric speciated mercury concentrations including total gaseous mercury (TGM) and reactive gaseous mercury (RGM) were measured in Chuncheon from March 2006 to November 2008. Average concentrations were 2.10 ${\pm}$ 1.50 ng/$m^3$ and 3.00 ${\pm}$ 3.14 pg/$m^3$ for TGM and RGM, respectively. RGM concentrations were higher during daytime than nighttime probably because of high photochemical activities. We found that RGM concentration considerably increased as ozone increased when fog occurred, indicating that ozone was the important oxidant for $Hg^0$ in aqueous phase. TGM concentration showed positive correlations with CO and $PM_{10}$ which can transport in long-range, but there was no correlation with $NO_2$. Considering that major source of mercury is combustion process, this result showed that local sources did not significantly impact on TGM concentration in Chuncheon. Five-day backward trajectories were calculated for the samples representing high and low concentrations of TGM, and determined that industrialized area of China including Shenyang and Beijing influenced TGM concentrations in Chuncheon.