• 제목/요약/키워드: Phase Shifted Current Control

검색결과 33건 처리시간 0.027초

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Leg-Balancing Control of the DC-link Voltage for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Lin, Jiliang
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.739-747
    • /
    • 2012
  • This paper applies carrier phase shifted pulse-width modulation (CPS-PWM) to transformerless modular multilevel converters (MMC) to improve the output spectrum. Because the MMC topology is characterized by the double-star connection of six legs consisting of cascaded modular chopper cells with floating capacitors, the balance control of the DC-link capacitor voltage is essential for safe operation. This paper presents a leg-balancing control strategy to achieve DC-link voltage balance under all operating conditions. This strategy based on circulating current decoupling control focused on DC-link balancing between the upper and lower legs in each phase pair by considering the six legs as three independent phase-pairs. Experiments are implemented on a 100-V 3-kVA downscaled prototype. The experimental results show that the proposed leg-balancing control is both effective and practical.

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.

저전압용 외전형 BLDC 전동기의 소비전류 최소화에 대한 연구 (A Study on the Current Minimization of a Outer-Rotor Type BLDC Motor for Low Voltage Application)

  • 김한들;정교범;신판석
    • 한국군사과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.211-216
    • /
    • 2018
  • This paper presents a numerical optimization technique and switching phase control technique aiming at improvement of efficiency of the low voltage BLDC motor. The optimization technique is performed using the generalized sensitivity technique, response surface method(RSM) and sampling minimization technique. In order to minimize current consumption of the BLDC motor, the switching method of the driving device is optimized using RSM with finite element analysis. The ratings of BLDC motor are 50 W, 24 V, 1200 rpm. As optimizing results, the input current is reduced from 2.78 to 2.51 [A] when the switching phase is shifted by -2.65 [DEG_ELC] at the rated driving speed of 1200 [rpm]. It is confirmed that the proposed method reduces the consuming current of the low voltage BLDC motor through switching phase control method using the numerical optimization method.

전향보상 전압의 위상 변화를 통한 단독운전 검출 방법의 계통 정상 상태의 성능 평가 (Performance Evaluation of Islanding Detection Method by Phase Shifted Feed-Forward Voltage in Steady-State Grid Condition)

  • 김동욱;김성민
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.373-380
    • /
    • 2018
  • This study proposes a new islanding detection method that uses the phase shift of feed-forward voltage and evaluates the performance of an existing method and the proposed method when the grid frequency changes within the allowable range under steady-state conditions. The investigated existing method, which is slip mode frequency shift (SMS), uses current phase shift to detect islanding. The SMS method supplies reactive current to the grid under this condition, but the proposed method does not generate additional reactive power because it does not depend on the current control loop. The performance in steady-state grid condition is evaluated through simulations and experiments.

출력 커패시터가 없는 위상천이 풀브릿지 컨버터의 전류 전향 보상을 이용한 출력 전압 제어 기법 (Output Voltage Control Technique Using Current Forward Compensation for Phase Shifted Full Bridge Converter Without Output Capacitor)

  • 신유승;백승우;김학원;조관열;강정원
    • 전력전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.40-47
    • /
    • 2022
  • At present, the low-voltage, high-current type power supply is mainly used for effective sterilization in the ballast water treatment system. Research on PSFB converters without output capacitors has been ongoing. Such converters effectively treat ballast water without a separate disinfectant through electric pulses by applying a pulse-type power to the output electrode without an output capacitor. However, in the case of the pulse-type electrolysis treatment method, voltage overshoot can occur due to abrupt voltage fluctuations when the load changes, resulting in circuit reliability problems because of the output capacitorless system. Therefore, a new voltage control algorithm is required. In this paper, we will discuss voltage control for pulsed electrolysis topology without an output capacitor. The proposed voltage control method has been verified using Simulation and experiment. The usefulness of the proposed control method has been proven by the experimental results.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

부하특성을 고려한 마그네트론 구동용 PS FB-ZVS PWM 컨버터의 설계 (A Design of PS FB-ZVS PWM Converter with Magnetron Load)

  • 이완윤;정교범;신판석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.360-363
    • /
    • 2001
  • The conventional 60(Hz) power supply for driving magnetron in microwave oven has disadvantages of heavy weight and low efficiency due to 60(Hz) High Voltage Transformer(HVT), capacitor and the phase control of thyristors with open-loop controller. To alleviate these disadvantages, this paper proposes a 20(kHz) phase-shifted(PS) Full-Bridge(FB) Zero- voltage-Switched(ZVS) PWM converter to drive a 600(W) magnetron in an 1(kW) microwave oven and to control the average anode current.

  • PDF

태양광발전을 위한 새로운 3상한 시스템에 관한 연구 (A novel three-phase power system for a simple photovoltaic generator)

  • 박성준;김정훈;김진영;김종현;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.181-184
    • /
    • 2005
  • Operating conditions of photovoltaic power generator is very sensitive to the PV modules. The PV module's control is an importance issue in the removing DC ripple noise. In this paper, the phase-shifted-carrier technique, which is a new three-step dc-dc power multi-converter schemes, is applied to solar generator system to improve the output current waveform. The novel type of three-step dc-dc converter presented has many features such as the good output waveform, high efficiency, low switching losses, low acoustic noise. The circuit configuration is constructed by the conventional full-bridge type converter circuit using the isolated DC power supply for which the solar cell is very suitable. In the end, a circuit design for understanding three-step dc-dc converter and new solar power system were presented

  • PDF

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.