• Title/Summary/Keyword: Phase Modulation

Search Result 1,372, Processing Time 0.028 seconds

Measurement of optical coefficients of multiple scattering media by using frequency domain spectroscopy (주파수 영역 분광법을 이용한 다중산란 매질의 광학계수 측정)

  • 전계진;윤길원;김건식;전성만;박승한
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.357-363
    • /
    • 1999
  • A frequency domain spectroscopic system was constructed to investigate the optical properties of multiple scattering media. The alternating current (AC) and phase lag components of backscattered light were measured by using the heterodyne detection method. Absorption and transport scattering coefficients were computed from the values based on diffusion theory. Predictions showed excellent matches in comparison with actual values of absorption and scattering. Predictable ranges of the optical coefficients were analyzed in terms of the distance between light source and detector, and modulation frequencies. A proposed compact experimental set-up using laser diodes can be utilized to estimate non-invasively the optical properties of multiple scattering media such as biological tissues.

  • PDF

Linear interrogation of fiber Bragg grating sensor array using time-delayed quadrature sampling technique (시간지연 샘플링을 이용한 광섬유 격자 센서어레이의 선형 복조)

  • 김종섭;송민호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • A fiber laser of which wavelength was scanned by an intra-cavity FP (Fabry-Perot) filter was used to interrogate a fiber Bragg grating strain sensor array. We calculated the wavelength variation of the fiber laser using quadrature signal processing with an unbalanced M/Z (Mach-Zehnder) interferometer and time-delayed sampling technique. The calculated wavelengths are mapped to corresponding temporal reflection peaks from the sensor array, which enables more accurate and stable interrogation without the problems caused by the FP filter's nonlinear characteristics. Wavelength resolution of ∼20 pm was obtained in our experimental setup, which could have been greatly enhanced with faster phase modulation.

Coherent and Semi-Coherent Correlation Detection of DSSS-FSK Signals for Low-Power/Low-Cost Wireless Communication (저전력, 저가격 무선통신을 위한 DSSS-FSK 신호의 동기 및 반동기 상관 검파)

  • Park Hyung Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.4 s.334
    • /
    • pp.1-6
    • /
    • 2005
  • For the low power and low cost transceivers, direct sequence spread spec01m frequency-shift keying (DSSS-FSK) is proposed. A transmitter of the DSSS-FSK signal can be implemented by a simple direct modulation using the phase locked loop. Since the DSSS-FSK signal has negligible power around the carrier frequency, low cost direct conversion receiver can be used. Optimum coherent and semi-coherent correlation detection methods for the DSSS-FSK signal are proposed and analyzed. Segmented semi-coherent correlation detection method is proposed to improve the bit error rate performance in the large carrier frequency offset.

A Feed-forward Method for Reducing Current Mismatch in Charge Pumps (전하 펌프의 전류 부정합 감소를 위한 피드포워드 방식)

  • Lee, Jae-Hwan;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • Current mismatch in a charge pump causes degradation in spectral purity of the phase locked loops(PLLs), such as reference spurs. The current mismatch can be reduced by increasing the output resistance of the charge pump, as in a cascoded output stage. However as the supply voltage is lowered, it is hard to stack transistors. In this paper, a new method for reducing the current mismatch is proposed. The proposed method is based on a feed-forward compensation for the channel length modulation effect of the output stage. The new method has been demonstrated through simulations on typical $0.18{\mu}m$ CMOS circuits.

Modulator of surface plasmon polariton based cycle branch graphene waveguide

  • Zhu, Jun;Xu, Zhengjie;Xu, Wenju;Wei, Duqu
    • Carbon letters
    • /
    • v.25
    • /
    • pp.84-88
    • /
    • 2018
  • At present, an important research area is the search for materials that are compatible with CMOS technology and achieve a satisfactory response rate and modulation efficiency. A strong local field of graphene surface plasmon polariton (SPP) can increase the interaction between light and graphene, reduce device size, and facilitate the integration of materials with CMOS. In this study, we design a new modulator of SPP-based cycle branch graphene waveguide. The structure comprises a primary waveguide of graphene-$LiNbO_3$-graphene, and a secondary cycle branch waveguide is etched on the surface of $LiNbO_3$. Part of the incident light in the primary waveguide enters the secondary waveguide, thus leading to a phase difference with the primary waveguide as reflected at the end of the branch and interaction coupling to enhance output light intensity. Through feature analysis, we discover that the area of the secondary waveguide shows significant localized fields and SPPs. Moreover, the cycle branch graphene waveguide can realize gain compensation, reduce transmission loss, and increase transmission distance. Numerical simulations show that the minimum effective mode field area is about $0.0130{\lambda}^2$, the gain coefficient is about $700cm^{-1}$, and the quality factor can reach 150. The structure can realize the mode field limits of deep subwavelength and achieve a good comprehensive performance.

Design and Fabrication of FSK Transmitter for Miniaturized Wireless Endoscope (초소형 무선 내시경용 FSK송신기 설계 및 제작)

  • 장경만;문연관;류원열;윤영섭;조진호;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.936-943
    • /
    • 2003
  • The miniaturized wireless endoscope consists of CMOS Image sensor, FPGA, LED, Battery, DC to DC Converter, Antenna and Transmitter. FSK transmitter is designed and fabricated with 10 mm(diameter)${\times}$23 mm(thickness) dimension considering the maximum permission exposure(MPE), system size, power consumption, linearity and modulation method. Experimental results is - 3.67 dBm output power level, 20 MHz frequency deviation, and - 99 dBc/Hz(@100 kHz offset) phase noise at 1.2 GHz. From the in-vivo experiment, the designed FSK transmitter has a acceptable capability for wireless endoscope.

An Implementation of Modulation/ Demodulation System Based on the Multipath Analyses for the Acoustic-based Communication (Multipath를 고려한 수중 초음파 통신시스템의 구현)

  • 임용곤;박종원;김천석;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. For the test of autonomous underwater vehicle(AUV), underwater acoustic channel with multipath structure is introduced to mathmatical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of mulipath's effect is presented as a mathmatical equation, and the equation or SMR is simulated by MATLAB program.

  • PDF

Waveform Generator for W-band Compact Radar (W-band 소형 레이다용 파형발생부)

  • Lee, Man-Hee;An, Se-Hwan;Kim, Young-Gon;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • In this paper, W-band Waveform Generator for compact radar has been designed and fabricated. DDS (Direct Digital Synthesizer) is applied to generate CW (Continuous Wave) and FMCW (Frequency Modulation Continuous Wave) waveform at high speed. We designed two LO (Local Oscillator) paths for functions of distance delay and distance tracking tests at the prpposed system without extra test equipment. Two mode selections are provided by switch. It is observed that fabricated waveform generator performs -91 dBc/Hz phase noise at offset 1 kHz and -63.2 dBc spurious. Proposed W-band Waveform Generator is expected to apply for W-band compact radar transceiver module.

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

Novel Multiple Access Schemes for IEEE 802.15.4a Low-rate Ultra-wide Band Systems

  • Zhang, Hong;Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.682-687
    • /
    • 2010
  • The IEEE 802.15.4a specification targets the low-rate (LR) Impulse-radio (IR) ultra-wideband (UWB) system which is now widely applied in the WPANs considering rather short distance communications with low complexity and power consumption. The physical (PHY) layer uses concatenated coding with mixed binary phase-shift keying and binary pulse-position modulation (BPSK-BPPM), and direct sequence spreading with time hopping in order that both coherent and non-coherent receiver architectures are supported. In this paper, the performances of multiple access schemes compliant with IEEE 802.15.4a specification are investigated with energy detection receiver, which allow avoiding the complex channel estimation needed by a coherent receiver. However, the performance of energy detection receiver is severely degraded by multi-user interference (MUI), which largely diminishes one of the most fascinating advantages of UWB, namely robustness to MUI as well as the possibility to allow parallel transmissions. So as to improve the performance of multiple access schemes, we propose to apply the novel TH sequences as well as to increase the number of TH positions. The simulation results show that our novel multiple access schemes significantly improve the performance against MUI.