• 제목/요약/키워드: Phase Doppler Particle Analyzer

검색결과 106건 처리시간 0.01초

입자크기와 노즐형상이 입자유동특성에 미치는 영향 (Effects of Particle Size and Injector Geometry on Particle Dynamics)

  • 전운학;김종철;황승식
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.97-103
    • /
    • 1998
  • The flow structure of particles for two different injectors has been investigated experimentally by means of a Phase Doppler Particle Analyzer(PDPA). Two injectors used in the present study are the pipe and contraction nozzle. Particles of 0.8${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 60 ${\mu}{\textrm}{m}$, and 100${\mu}{\textrm}{m}$ diameter were injected with a constant mass loading ratio of 0.01 and a Reynolds number of 13200. The initial mean velocity and turbulent intensity of particle are strongly influenced by the particle size and the injector geometry. The flow angles of particle at nozzle exit are sensitive to the particle size rather than the injector geometry.

  • PDF

노즐 형상 및 입경에 따른 난류 분류중의 미립자 유동 특성에 관한 연구 (A Study of Particle Motion for Nozzle Geometry and Particle Diameter in Turbulent Jet Flow)

  • 김종철;황승식;전운학
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.17-31
    • /
    • 1999
  • This paper is a review of the results of examining the flow characteristics of gas and particles with regards to pipe-type nozzle and converging nozzles depending on nozzle geometry. The nozzles used in this experiment are the pipe-type nozzle which can sufficiently mix the gas and particles, and the converging nozzle which can rapidly accelerate fluid . The particles used at the time of this experiment each measured 0.8, 30, 60 and 80${\mu}{\textrm}{m}$ in the diameter. The Phase Doppler Particle Analyzer was used to measure the velocity of each particle, and the Hot-wire probe was used to measure the spectrum in order to analyze the flow near the nozzle exit of the 0.8${\mu}{\textrm}{m}$ particle.

  • PDF

입자분리기 최적 설계를 위한 다상 유동 해석 (Analysis of Gas-Solid Flow for the Optimum Design of Coal Splitter)

  • 육심균;류제욱;이익형;이상룡
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1604-1611
    • /
    • 2003
  • The experimental investigation of a coal splitter used in the 500㎿(e) boilers of fossil power plant is carried out to validate the design criteria. To predict air flow and the amount of particles at the exit, velocity and the weight of particles are measured on test planes using the coal splitter model with two-dimensional phase doppler particle analyzer and the glass fiber filter. It is found that the position of guide plate influences significantly both flow rates of gas and particle at the exit. Gas flow rate was a linear function of the guide plate, whereas particle flow rate was a exponential function of it.

회전연료노즐 형상변경에 따른 분무특성 (Spray Characteristics of the Rotating Fuel Nozzle with Orifice Geometry)

  • 장성호;최현경;이동훈;유경원;최성만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.240-243
    • /
    • 2008
  • 회전식 연료 노즐의 분무특성을 알기 위해서 고속회전 시험장치를 이용하여 실험적 연구를 수행하였다. 시험장치는 연료공급장치, 고속 회전장치 그리고 아크릴 케이스로 구성되어있다. Injection orifice의 직경 및 개수를 변화시켜가며 분무실험을 수행하였다. 액적의 크기 및 속도는 PDPA(Phase Doppler Particle Analyzer)시스템을 이용하여 측정하였다. 실험결과로부터 Injection orifice의 직경 및 개수변화에 따른 회전식 노즐의 분무특성을 이해 할 수 있었다.

  • PDF

연료분무의 위상도플러 측정과 확률밀도함수의 도출 (Phase Doppler Measurements and Probability Density Functions in Liquid Fuel Spray)

  • 구자예
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1039-1049
    • /
    • 1994
  • The intermitternt and transient fuel spray have been investigated from the simultaneous measurement of droplet sizes and velocities by using Phase/Doppler Particle Analyzer(PDPA). Measurement have been done on the spray axis and at the edge of the spray near nozzle at various gas-to-liquid density ratios(.rho./sub g//.rho./sub l/) that ranges from those found in free atmospheric jets to conditions typical of diesel engines. Probability density distributions of the droplet size and velocity were obtained from raw data and mathematical probability density functions which can fit the experimental distribations were extracted using the principle of maximum likelihood. In the near nozzle region on the spray axis, droplet sizes ranged from the lower limit of the measurement system to the order of nozzle diameter for all (.rho./sub g/ /.rho./sub l/) and droplet sizes tended to be small on the spray edge. At the edge of spray, average droplet velocity peaked during needle opening and needle closing. The rms intensity is greatly incresed as the radial distance from the nozzle is increased. The probability density function which can best fit the physical breakage process such as breakup of fuel drops is exponecially decreasing log-hypebolic function with 4 parameters.

SPRAY STRUCTURE OF HIGH PRESSURE GASOLINE INJECTOR IN A GASOLINE DIRECT INJECTION ENGINE

  • Lee, Chang Sik;Chon, Mun Soo;Park, Young Cheol
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.165-170
    • /
    • 2001
  • This study is focussed on the investigation of spray characteristics from the high pressure gasoline injector for the application of gasoline direct injection engine. For the analysis of spray structure of high pressure gasoline injector; the laser scattering method with a Nd-Yag laser and the Phase Doppler particle analyzer system were applied to observe the spray development and the measurement of the droplet size and velocity of the spray, respectively. Also spatial velocity distribution of the spray droplet was measured by use of the particle image velocity system. Experimental results show that high pressure gasoline injector shapes the hollow-cone spray, and produce the upward ring shaped vortex on the spray surface region. This upward ring shaped vortex promotes the secondary atomization of fuel droplets and contributes to a uniform distribution of fuel droplets. Most of fuel droplets are distributed under 31$\mu m$ of the mean droplet size (SMD) and the frequency distribution of the droplet size under 25$\mu m$ is over 95% at 7 MPa of injection pressure. According to the experimental results of PIV system, the flow patterns of the droplets velocity distribution in spray region are in good agreement with the spray macroscopic behaviors obtained from the visualization investigation.

  • PDF

디젤 충돌 분무의 발달 과정 및 내부 유동 특성 (Internal Structure and Velocity Field of the Impinging Diesel Spray on the Wall)

  • 전문수;서현규;박성욱;이창식
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2005
  • The purpose of this study is to investigate the internal structure of the impinged diesel spray at various experimental conditions. To examine the effect of various factors on the development of a diesel spray impinging on the wall, experiments were conducted at the various Injection pressures, wall distances from the nozzle tip and angles of wall inclination. The PIV system consists of a double pulsed Nd:YAG laser was utilized to analyze the internal flow structure of impinged diesel sprays. The velocity fields from the PIV system were compared with the results measured by the phase Doppler particle analyzer(PDPA)system. The results show that internal flow pattern of the impinged spray was similar with the results from the PDPA system. The radial velocity of the impinged spray was increased with the increase in the injection pressure and near the nozzle-wall distance. The generation of vortex was also promoted with the Increase in angles of wall inclination.

  • PDF

회전연료 분사시스템의 분열과정 (Disintegration Process of the Rotating Fuel Injector)

  • 장성호;이동훈;유경원;최성만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.171-174
    • /
    • 2008
  • 소형 회전연료 분사장치의 분열과정 특성을 연구하기 위한 실험적 연구를 수행하였다. 이러한 분열과정의 특성을 이해하기 위해 PDPA(Phase Doppler Particle Analyzer)시스템을 사용하여 분무입자의 크기와 속도를 측정하였다. 또한 Nd-Yag Laser를 광원으로 사용하여 분무를 가시화하였다. 실험결과 Injection Orifice로부터 생성된 액주는 회전수에 의해 지배되고, SMD(Sauter Mean Diameter)와 분무특성은 Injection Orifice의 직경에 큰 영향을 받는다는 것을 알 수 있었다.

  • PDF

INFLUENCE OF ALR ON DISINTEGRATION CHARACTERISTICS IN PNEUMATIC SPRAY

  • Lee, S.G.;Joo, B.C.;Kim, K.C.;Rho, B.J.
    • International Journal of Automotive Technology
    • /
    • 제1권2호
    • /
    • pp.95-100
    • /
    • 2000
  • The droplet and the turbulent characteristics of a counterflowing internal mixing pneumatic nozzle mainly focused. The measurements were made using a Phase Doppler Particle Analyzer under the different air pressures. The nozzle with tangential-drilled holes at an angle of 30 to the central axis has been designed. The spatial distributions of velocities, fluctuating velocities, droplet diameters and SMD were quantitatively and qualitatively fluctuating velocities were substantially higher than the radial and the tangential ones. This implies that the disintegration process is enhanced with the higher air pressure. The larger droplets were detected near the spray centerline at the upstream while the smaller ones were generated at the downstream. This was attributed to the lower rates of spherical particles which were not subject to instantaneous breakup. However, substantial increases in SMD from the central part tower spray periphery were predictable in downstream regions.

  • PDF