• Title/Summary/Keyword: Phase Doppler Measurement

Search Result 85, Processing Time 0.027 seconds

Liquid Atomization and Spray Characteristics in Electrostatic Spray of Twin Fluids (2유체 정전분무의 액체 미립화 및 분무 특성)

  • Kim, Jeong-Heon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1552-1560
    • /
    • 2001
  • This paper presents the experimental results of a study undertaken to develop an electrostatic spray system for a combustion application. The characteristics of the liquid atomization and the droplet dispersion in the electrostatic spray of twin fluids were investigated by the optical measurement techniques. The processes associated with the break-up of charged jets were also observed using the laser sheet visualization. The diameter and velocity of droplets were simultaneously measured using the phase Doppler measurement technique. The electrostatic atomization of the liquid fuel depended primarily on the charging voltage and the flow rate, but the dispersion of droplets depended significantly on the aerodynamic flow. Aerodynamic influences on the liquid atomization decreased with an increase of the charging voltage. Consequently, the liquid atomization and the droplet dispersion could be independently controlled using the electrostatic and aerodynamic mechanisms.

A Study on Precise Positioning with Doppler Measurements for Ground Transportation System (도플러 측정치를 이용한 육상교통 환경에 적합한 정밀 측위 기법 연구)

  • Lee, Byung-Hyun;Jee, Gyu-In
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.632-639
    • /
    • 2010
  • Ground Transportation is one of the most required field that users need positioning information Especially, more precise position can make smart traffic management possible and bring convenience to users. By advanced wireless network, cars can receive the GPS information of reference station in any tim e and any where. Thus land vehicles are possible to process precise positioning. In general, for precise positioning code and phase measurements are used. But receivers provide not only code and phase measurements but also doppler measurements and Doppler is direct measurement of velocity. In this paper, because velocity is very important information required in Ground Transportation, precise positioning for Ground Transportation is studied. For precise positioning RTK(Real-Time Kinematic) was used and double differenced doppler measurements were added, As a Result, positioning error by multipath and cycle slip was soften. However there still remained Positioning error. Thus smoothing technique using doppler measurement in position domain is used for softening positioning error.

Efficient Measurement System to Investigate Micro-Doppler Signature of Ballistic Missile

  • Choi, In-O;Kim, Kyung-Tae;Jung, Joo-Ho;Kim, Si-Ho;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.614-621
    • /
    • 2016
  • Micro-Doppler (MD) shift caused by the micro-motion of a ballistic missile (BM) can be very useful to identify it. In this paper, the MD signatures of three scale-model BMs are investigated using a portable measurement system. The measurement system consists of an X-band 2-by-2 phase comparison mono-pulse radar, and a mechanical device that can impart controlled spinning and coning motions simultaneously to a model to yield the MD signature that replicates the characteristic of each target and the corresponding micro-motion. The coning motion determined the overall period of MD, and the spinning motion increased its amplitude. MD was also dependent on aspect angle. The designed system is portable, and can implement many micro-motions; it will contribute to analysis of MD in various situations.

Multifrequency Imaging of Radar Turntable by Phase and Amplitude Measurement (다주파수 신호를 사용한 회전물체의 위상과 진폭측정에 의한 영상)

  • Suh, Kyoung-Whoan;Lee, Kyoung-Soo;Kim, Se-Youn;Ra, Jung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.392-397
    • /
    • 1987
  • This paper concerns a method for micro-wave imaging. The image reconstruction of a perfect conducting cylinder by phase and amplitude measurement using the X-Band multifrequency is presented troll the simulated data. The high degree of range resolution is achieved using large signal band-width and cross-range resolution is obtained by doppler processing. The comparison of image reconstruction between range doppler processing and circular convolution algorithm is also shown.

  • PDF

Development of Dual Beam High Speed Doppler OFDI

  • Kim, SunHee;Park, TaeJin;Oh, Wang-Yuhl
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.283-288
    • /
    • 2013
  • This paper describes development of a high speed Doppler OFDI system for non-invasive vascular imaging. Doppler OFDI (optical frequency domain imaging) is one of the phase-resolved second generation OCT (optical coherence tomography) techniques for high resolution imaging of moving elements in biological tissues. To achieve a phase-resolved imaging, two temporally separated measurements are required. In a conventional Doppler OCT, a pair of massively oversampled successive A-lines is used to minimize de-correlation noise at the expense of significant imaging speed reduction. To minimize a de-correlation noise between targeted two measurements without suffering from significant imaging speed reduction, several methods have been developed such as an optimized scanning pattern and polarization multiplexed dual beam scanning. This research represent novel imaging technique using frequency multiplexed dual beam illumination to measure exactly same position with aimed time interval. Developed system has been verified using a tissue phantom and mouse vessel imaging.

GPS Pull-In Search Using Reverse Directional Finite Rate of Innovation (FRI)

  • Kong, Seung-Hyun;Yoo, Kyungwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 2014
  • When an incoming Global Positioning System (GPS) signal is acquired, pull-in search performs a finer search of the Doppler frequency of the incoming signal so that phase lock loop can be quickly stabilized and the receiver can produce an accurate pseudo-range measurement. However, increasing the accuracy of the Doppler frequency estimation often involves a higher computational cost for weaker GPS signals, which delays the position fix. In this paper, we show that the Doppler frequency detectable by a long coherent auto-correlation can be accurately estimated using a complex-weighted sum of consecutive short coherent auto-correlation outputs with a different Doppler frequency hypothesis, and by exploiting this we propose a noise resistant, low-cost and highly accurate Doppler frequency and phase estimation technique based on a reverse directional application of the finite rate of innovation (FRI) technique. We provide a performance and computational complexity analysis to show the feasibility of the proposed technique and compare the performance to conventional techniques using numerous Monte Carlo simulations.

A study on the development of CW(Continuous-Wave) Doppler system for measuring bi-directional blood flow information. (혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구)

  • Kang, Chung-Sin;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1239-1242
    • /
    • 1987
  • With the convention CW Doppler velocity meter, bi-directional velocities cannot be separated. The new CW Doppler system usee quadrature detection and phase rotation to Produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, can easily differentiate typical artery flow from vein flow. and measure both velocity characteristics qualitatively.

  • PDF

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF

Measurement Results of C-ITS Channel Characteristics Using Real Environment Compensation Technique (실 환경 보상기법을 이용한 C-ITS 채널 특성 측정 결과)

  • Kim, Chung-Sup;Kim, Hyuk-Je;Lim, Jong-Su;Chong, Young-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.920-923
    • /
    • 2017
  • In this paper, we design the internal parameters of the SIMO channel sounder suitable for the measurement of the high-speed travel environment channel, and measure the characteristics of the wide-band channel by applying the proposed measurement method to the Yeoju Smart Highway piloted at 5.89 GHz C-ITS. Based on the design of the receiving array structure suitable for the real environment, the linear slope compensation method for the Doppler phase shift is applied to provide a reliable result on the Doppler effect due to the incoming angle information and the surrounding environment in the multipath environment.

Volumetric Blood Velocity Measurement on Multigate Pulsed Doppler System based on the Single Channel RF Sampling using the Optimized Sampling Factor (최적화된 샘플링 인수를 갖는 단일 채널 RF 샘플링 방식의 다중점 펄스 도플러 시스템을 사용한 혈류 속도분포 측정)

  • 임춘성;민경선
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • In this paper, we present the performances of a Doppler system using single channel RF(Radio Frequency) sampling. This technique consists of undersampling the ultrasonic blood backscattered RF signal on a single channel. Conventional undersampling method in Doppler imaging system have to use a minimum of two identical parallel demodulation channels to reconstruct the multigate analytic Doppler signal. However, this system suffers from hardware complexity and problem of unbalance(gain and phase) between the channels. In order to reduce these problems, we have realized a multigate pulsed Doppler system using undersampling on a single channel, It requires sampling frequency at $4f_o$(where $f_o$ is the center frequency of the transducer) and 12bits A/D converter. The proposed " single-Channel RF Sampling" method aims to decrease the required sampling frequency proportionally to $4f_o$/(2k+1). To show the influence of the factor k on the measurements, we have compared the velocity profiles obtained in vitro and in vivo for different intersequence delays time (k=0 to 10). We have used a 4MHz center frequency transducer and a Phantom Doppler system with a laminar stationary flow. The axial and volumetric velocity profiles in the vessel have been computed according to factor k and have been compared. The influence of the angle between the ultrasonic beam and the flow axis direction, and the fluid viscosity on the velocity profiles obtained for different values of k factor is presented. For experiment in vivo on the carotid, we have used a data acquisition system with a sampling frequency of 20MHz and a dynamic range of 12bits. We have compared the axial velocity profiles in systole and diastole phase obtained for single channel RF sampling factor.ng factor.

  • PDF