• Title/Summary/Keyword: Phase Chang

Search Result 3,018, Processing Time 0.027 seconds

On-line Measurement of Partial Discharge (활선상의 부분방전 측정 방법)

  • Paek, Kwang-Hyeon;Choi, Yong-Sung;Park, Dae-Hee;Lee, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1936-1938
    • /
    • 2004
  • In this paper, we discussed measurement method of PD (Partial Discharge) of 22.9[kV] cable. Cable rail track laying portable detector that can detect partial discharge of cable connection ashes by on-line done spot way to detect Lemke equipment and high broadcasting CT sensor that use antenna sensor using ICM mounting was explained. Because measurement corona signal is very big, analysis of partial discharge is difficult state, we used connector. It could be attenuated by 2 times. We found out that corona signal which generated on B phase is flowed on A phase and C phase. It could measure that partial discharge of A phase happens actually. We could confirm that partial discharge of about 250 ${\sim}$ 300 [pC] on A phase is dangerous.

  • PDF

Deduction of Critical Components for establishing the Environmental Load Reduction Guideline in Construction Phase (시공단계 환경부하 저감 가이드라인 구축을 위한 주요 구성항목 도출)

  • Kim, Chang-Won;Kim, Chun-Hak;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.127-128
    • /
    • 2012
  • Recently, Construction industry has been trying to reduce environmental loads reflecting the global trend 'Green Growth'. Internal and External countries are provided 'green building certification', 'relevant law/regulations', 'guideline to life cycle', however, construction phase has been overlooked though environmental loads occurred intensively in this phase. Therefore, this study intend to deduct components reflected the guideline in construction phase and assess them quantitatively. The basis data is collected through survey targeting construction managers and related researchers and analyze these data using Analytic Hierarchy Process.

  • PDF

Developed Inherent Strain Method Considering Phase Transformation of Mild Steel in Line Heating (선상가열시 강의 상변태를 고려한 개선된 고유변형도 기반의 등가하중법)

  • Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.65-74
    • /
    • 2004
  • The inherent strain method is known to be very efficient in predicting the deformation of steel plate by line heating. However, in the actual line heating process in shipyard, the rapid quenching changes the phase of steel. In this study, In order to consider additional effects under phase transformation, inherent strain regions were assumed to expand. Also, when calculating inherent strain, material properties of steel in heating and cooling are applied differently considering phase transformation. In this process, a new method which can reflect thermal volume expansion of martensite is suggested.8y the suggested method, it was possible to predict the plate deformations by line heating more precisely.

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS (스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석)

  • Park, Y.M.;Chang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF

RVDT Phase Error Compensation for Absolute Displacement Measurement (절대 변위 측정용 RVDT의 위상 오차 보상)

  • Shin Dong-Yun;Yang Yoon-Gi;Lee Chang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.658-665
    • /
    • 2006
  • RVDT is a transducer that presents rotary phase angle according to the displacement of eccentric rotor such as press machine. However a study on the phase error of RVDT that affects precision is not enough. This paper analyzes RVDT phase error and obtains compensation curves with serial or parallel resistance through simulation. First, error compensation procedure that analyses errors due to the unbalance of reference inductances of each pole and uses parallel resistance as a compensation is proposed. Second, error compensation procedure due to the amplitude unbalance of the sensor driving currents is examined by serial compensation resistance. Experimentally, we got stable RVDT with phase error under $1^{\circ}$ by the proposed method.

A CMOS Frequency Synthesizer for 5~6 GHz UNII-Band Sub-Harmonic Direct-Conversion Receiver

  • Jeong, Chan-Young;Yoo, Chang-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.153-159
    • /
    • 2009
  • A CMOS frequency synthesizer for $5{\sim}6$ GHz UNII-band sub-harmonic direct-conversion receiver has been developed. For quadrature down-conversion with sub-harmonic mixing, octa-phase local oscillator (LO) signals are generated by an integer-N type phase-locked loop (PLL) frequency synthesizer. The complex timing issue of feedback divider of the PLL with large division ratio is solved by using multimodulus prescaler. Phase noise of the local oscillator signal is improved by employing the ring-type LC-tank oscillator and switching its tail current source. Implemented in a $0.18{\mu}m$ CMOS technology, the phase noise of the LO signal is lower than -80 dBc/Hz and -113 dBc/Hz at 100 kHz and 1MHz offset, respect-tively. The measured reference spur is lower than -70 dBc and the power consumption is 40 m W from a 1.8 V supply voltage.

Numerical Flow Visualization of Cyclic Motion of a Fling-Clapping Wing (프링-크래핑 날개의 주기적 운동에 관한 수치적 흐름 가시화)

  • Chang, Jo-Won;Sohn, Myong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1511-1520
    • /
    • 2004
  • A flow visualization of the two-dimensional rigid fling-clap motions of the flat-plate wing are performed to gain knowledge of butterfly mechanisms that might be employed by butterflies during flight. In this numerical visualization, the time-dependent Navier-Stokes equations are solved for cyclic fling and clap types of wing motion. The separation vortex pair that is developed in the fling phase of the cyclic fling and clap motion is observed to be stronger than those of the fling followed by clap and pause motion(1st cycle motion). This stronger separation vortex pair in the fling phase is attributable to the separation vortex pair of the outside space developed in the clap phase as it moves into the opening in the following fling phase. Accordingly, higher lift and power expenditure coefficients in the fling after clap phase is caused by the stronger separation vortex pair.

The Design of IMC-PID Controller Considering a Phase Scaling Factor (위상 조절 인자를 고려한 IMC-PID 제어기의 설계)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1618-1623
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain and phase margins, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

Accelerating Memory Access with Address Phase Skipping in LPDDR2-NVM

  • Park, Jaehyun;Shin, Donghwa;Chang, Naehyuck;Lee, Hyung Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Low power double data rate 2 non-volatile memory (LPDDR2-NVM) has been deemed the standard interface to connect non-volatile memory devices such as phase-change memory (PCM) directly to the main memory bus. However, most of the previous literature does not consider or overlook this standard interface. In this paper, we propose address phase skipping by reforming the way of interfacing with LPDDR2-NVM. To verify effectiveness and functionality, we also develop a system-level prototype that includes our customized LPDDR2-NVM controller and commercial PCM devices. Extensive simulations and measurements demonstrate up to a 3.6% memory access time reduction for commercial PCM devices and a 31.7% reduction with optimistic parameters of the PCM research prototypes in industries.