• Title/Summary/Keyword: Phase Averaging Technique

Search Result 47, Processing Time 0.022 seconds

Influence of unsteady wake on a turbulent separation bubble (난류박리기포에 대한 비정상 후류의 영향)

  • Chun, Se-Jong;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.294-299
    • /
    • 2001
  • An experimental study was made of turbulent separated and reattaching flow over a blunt body, where unsteady wake was generated by a spoke wheel-type wake generator with cylindrical rods. The influence of unsteady wake was scrutinized by altering the rotating direction (CW and CCW) and the normalized passing frequency $(0{\leq}St_H{\leq}0.20)$. The Reynolds number based on the cylindrical rod was $Re_d=375$. A phase-averaging technique was employed to characterize the unsteady wake. The effect of different rotating directions was examined in detail, which gave a significant reduction of $X_R$. The wall pressure fluctuations on the blunt body were analyzed in terms of the spectrum and the coherence.

  • PDF

The stability analysis of current mode controller considering feedback element (피드백 요소를 고려한 전류모드 제어기의 안정도해석)

  • Kim, Cherl-Jin;Song, Yo-Chang;Jin, Young-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.239-241
    • /
    • 2001
  • Recently the power supply equipments have tendency to take multiple feedback loop paths. In this paper, the state space averaging technique is applied for the analysis of flyback type current mode control circuit. We made real converter for the gurantee of stable output characteristic and proper design of feedback circuit. The validity of proposed method is verified from test results. The improvement of stability is confirmed by sinusoidal signal injection method with isolated transformer. It is known that phase margin is sufficient and gain crossover frequency $f_c$, is nearly 1/5 of switching frequency $f_s$, from the experimental result with frequency response analyzer.

  • PDF

A Study on the stability improvement of current-mode controlled DC-DC Converter (전류제어형 DC-DC컨버터의 안정도 향상에 관한 연구)

  • Kim, Cherl-Jin;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.365-367
    • /
    • 2000
  • Recently, the power supply equipments have tendency to take multiple feedback loop paths. In this paper, the state space averaging technique is applied for the analysis of flyback type current mode control circuit. We made real converter for the gurantee of stable output characteristic and proper design of feedback circuit. The validity of proposed method is verified from test results. The improvement of stability is confirmed by sinusoidal signal injection method with isolated transformer. It is known that phase margin is sufficient and gain crossover frequency $f_c$ is nearly 1/5 of switching frequency $f_s$ from the experimental result with frequency response analyzer.

  • PDF

Influence of Unsteady Wake on a Turbulent Separation Bubble (난류박리기포에 대한 비정상 후류의 영향)

  • Jeon, Se-Jong;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.353-361
    • /
    • 2002
  • An experimental study was made of turbulent separated and reattaching flow over a blunt body, where unsteady wake was generated by a spoke wheel-type wake generator with cylindrical rods. The influence of unsteady wake was scrutinized by altering the rotating direction (CW and CCW) and the normalized passing frequency (0 St$\_$H/ 0.20). The Reynolds number based on the cylindrical rod was Re$\_$d/=375. A phase-averaging technique was employed to characterize the unsteady wake. The effect of different rotating directions was examined in detail, which gave a significant reduction of x$\_$R/. The wall pressure fluctuations on the blunt body were analysed in terms of the spectrum and the coherence.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

An Experimental Study on the Turbulence Structure of Tip Vortices Generated by a Rotor Blade at the Initial Wake Age (회전익 끝와류의 초기 난류 구조에 관한 실험적 연구)

  • Kim, Young Soo;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.661-669
    • /
    • 1999
  • The evolutionary structure of a tip vortex in the initial period have been investigated by the two-dimensional LDV system. Circumferential and axial components of mean velocities, their turbulences and Reynolds stresses were measured by the phase averaging technique at seven different wake ages within one revolution of the rotor. Core growth was also analyzed. It was resulted that circumferential velocity components showed a Rankine combined vortex shape and their circulation profiles viewed in the radial direction were close to the n = 2 model of Vatistas' algebraic formula, while axial velocity components seemed to have the Gaussian profiles In these measured ranges with the base width of three times of core radii. Peaks of circumferential velocities and core radii showed distinct asymmetric behaviors before the wake age of $150^{\circ}$ over inboard and outboard sides of the slipstream, but they became symmetric afterwards. Turbulence profiles which had two peaks Inside the core radii in the earlier wake age were also changed to single peaks after $150^{\circ}$. These trends imply that the tip vortex was barely mature at this wake age.

PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller (회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석)

  • 이상준;백부근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

Propeller Wake Measurement of a Model Ship in Self Propulsion Condition using Towed Underwater PIV (입자영상유속계를 이용한 자항상태 모형선의 프로펠러 후류 계측)

  • Seo, Jeonghwa;Yoo, Geuk Sang;Lim, Tae Gu;Seol, Dong Myung;Han, Bum Woo;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.171-177
    • /
    • 2014
  • A two-dimensional particle image velocimetry (2D PIV) system in a towing tank is employed to measure a wake field of a very large crude oil carrier model with rotating propeller in self propulsion condition, to identify characteristics of wake of a propeller working behind a ship. Phase-averaged and time-averaged flow fields are measured for a horizontal plane. Scale ratio of the model ship is 1/100 and Froude number is 0.142. By phase-averaging technique, trajectories of tip vortex and hub vortex are identified and characteristic secondary vortex distribution is observed in the hub vortex region. Propeller wake on the starboard side is more accelerated than that on the port side, due to the difference of inflow of propeller blades. The hub vortex trajectory tends to face the port side. With the fluctuation part of the phase-averaged velocity field, turbulent kinetic energy (TKE) is also derived. In the center of tip vortex and hub vortex region, high TKE concentration is observed. In addition, a time-averaged vector field is also measured and compared with phase-averaged vector field.

Experimental Study on the Aerodynamic Interaction of the Rotor and Stator for the Ducted fan UAV (덕티드 팬 무인기의 동익과 정익 공력상호작용에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.387-391
    • /
    • 2009
  • The experimental study on the ducted fan for the propulsion system of a small UAV has been performed. In this paper, to investigate the three-dimensional unsteady flow field characteristics of the ducted fan, it was measured by using a $45^{\circ}$ inclined hot-wire from hub to tip at inlet, behind the rotor and outlet of the ducted fan. The hot-wire signal data was acquired at fixed yaw angle. The data was averaged by using the PLEAT (Phase Locked Ensemble Averaging Technique), and then three of non-linear equations were solved simultaneously by using the Newton-Rhapson numerical method. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential contour plot.

  • PDF