• Title/Summary/Keyword: Pharmacology: intrathecal

Search Result 32, Processing Time 0.015 seconds

Effects of Locus Coeruleus/Subcoeruleus Stimulation on the Tail Flick Reflex and Efflux of Noradrenaline into the Spinal Cord Superfusates (청반핵 자극으로 인한 노르아드레날린의 유리가 동통의 조절에 미치는 영향)

  • Park, Kyung-Pyo;Kim, Jong-Sung;Suh, Dae-Chul;Park, Hyoung-Sup
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.29-37
    • /
    • 1994
  • Inhibition of the nociceptive Tail Flick Reflex (TFR) was observed with electrical stimulation of the locus coeruleus/subcoeruleus (LC/SC) in the male Sprague - Dawley rats under light anesthesia, and the involved neurotransmitter (s) were characterized. Electrical stimulation of LC/SC induced the analgesia with the stimulation threshold (intensity of the current, given for 100 usec and in 100 Hz frequency, which caused the TF latency longer than 6.5 sec) around 55 uA. Intrathecal administrations of ${\alpha}_2$ antagonist, yohimbine (30 ug) or opioid antagonist, naloxone (20 ug) increased the stimulation threshold by 147% and 123% respectively (from 55 uA to 135 uA,9 and from 54 uA to 123 uA;P0.01, n=5, each). The basal TF latency without stimulation (3.1 sec) was reduced by the antagonists (to 2.5 sec by yohimbine, p<0.05, n=5; to 2.6 sec by naloxone, p<0.1, n=5), vehicle only did not show any effect. Noradrenaline(NA) in the spinal cord superfusates measured with HPLC was increased by the LC/SC stimulation, from 4.18 ng/ml before to 7.74 ng/ml after stimulation (P<0.05, n=10). The result suggest that analgesia induced by LC/SC stimulation is mediated, at least in part, by the noradrenergic system in which ${\alpha}_2$ receptor is involved, as well as the opioid system.

  • PDF

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao;Wan, Yingchun;Sun, Lijuan;Tao, Shoujun;Chen, Peng;Liu, Caihua;Wang, Ke;Zhou, Changyu;Zhao, Guoqing
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.414-422
    • /
    • 2019
  • There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.