• Title/Summary/Keyword: Pharmacological Treatment

Search Result 880, Processing Time 0.027 seconds

Rosa Damascene Mill. (Rose): A versatile herb in cosmetology

  • Ahmed, Yasmeen;Jamil, S.Shakir;Hashimi, Ayshah;Siraj, Mantasha Binth;Jahangir, Umar
    • CELLMED
    • /
    • v.9 no.4
    • /
    • pp.2.1-2.4
    • /
    • 2019
  • With the improvement of economic status and the desire for beauty, the interest in health and skin care is increasing. For these demands, since ages medicinal plants are in vogue. A variety of plants, cosmetics and foods with novel bioactive ingredients for skin care and beauty are under constant research and development. Skin is influenced by various factors such as Ultra-violet rays, stress, hormones and aging which together lead skin to lose elasticity, changes in pigmentation and wrinkle formation. Many medicinal plants have proven effects in skin care and beauty treatment. From this list of medicinal plants, one which is famous for its beauty, flavor and fragrance is Rosa damascene. Rosa damascene has many therapeutic action and postulated pharmacological studies such as anti-arthritic, anti-microbial, cardio protective, anti-inflammatory, antioxidant, analgesic, immune-modulator, gastro-protective, and skin ameliorative effect. Research in the field of Cosmetology has proven the effect of Rosa damascene in rehydrating skin, reducing scars and stretches, acne management, lowering skin pigmentation, delaying wrinkling and is recommended as a skin vitalizing agent. In this review, the morphology, chemical constituents, and some pharmacological activity are discussed.

Hair Growth Promotion by δ-Opioid Receptor Activation

  • Zheng, Mei;Choi, Nahyun;Balboni, Gianfranco;Xia, Ying;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.643-649
    • /
    • 2021
  • Literature has revealed that the delta opioid receptor (DOR) exhibited diverse pharmacological effects on neuron and skin. In the present study, we have investigated whether the activation of DOR has hair-growth promotion effects. Compared with other opioid receptor, DOR was highly expressed in epidermal component of hair follicle in human and rodents. The expression of DOR was high in the anagen phase, but it was low in the catagen and telogen phases during mouse hair cycle. Topical application of UFP-512, a specific DOR agonist, significantly accelerated the induction of the anagen in C3H mice. Topical application of UFP-512 also increased the hair length in hair organ cultures and promoted the proliferation and the migration of outer root sheath (ORS) cells. Similarly, pharmacological inhibition of DOR by naltrindole significantly inhibited the anagen transition process and decreased hair length in hair organ cultures. Thus, we further examined whether Wnt/β-catenin pathway was related to the effects of DOR on hair growth. We found that Wnt/β-catenin pathway was activated by UFP-512 and siRNA for β-catenin attenuated the UFP-512 induced proliferation and migration of ORS cells. Collectively, result established that DOR was involved in hair cycle regulation, and that DOR agonists such as UFP-512 should be developed for novel hair-loss treatment.

Pharmacological treatment options for acne (여드름의 약물치료요법)

  • Park, Kui Young
    • Journal of the Korean Medical Association
    • /
    • v.61 no.11
    • /
    • pp.680-686
    • /
    • 2018
  • Acne vulgaris is a very common condition affecting up of about 80% to 90% of adolescents. The patients with acne have been shown to be adversely impacted by the effect of acne on their quality of life. Four factors are believed to play a key role in the development of acne lesions: excess sebum production, disturbed keratinization within the follicle, colonization of the pilosebaceous duct by Propionibacterium acnes, and the release of inflammatory mediators into the skin. Consequently, the target for acne therapy is these well-known pathogenic factors responsible for this disease state. Topical retinoids correct abnormal keratinization, but it should be applied cautiously because of irritation. Benzoyl peroxide is an effective bactericidal agent against P. acnes. Main topical antibiotics are erythromycin and clindamycin. Fixed combination topical products with retinoids, benzoyl peroxide and antibiotics have been introduced. Use of systemic antibiotics, including tetracyclines and macrolides rapidly improves inflammatory acne lesions. Oral isotretinoin is effective against all of the main pathogenic features of acne but is contraindicated in pregnant women and has been associated with cheilitis and dry skin. Hormonal therapy has been found to improve acne in some selective patients and should be considered for appropriate candidates. This review will present the general aspects of the pharmacological treatments for acne.

Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor

  • Sur, Bongjun;Lee, Bombi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.415-425
    • /
    • 2022
  • Memory formation in the hippocampus is formed and maintained by circadian clock genes during sleep. Sleep deprivation (SD) can lead to memory impairment and neuroinflammation, and there remains no effective pharmacological treatment for these effects. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. In this study, we investigated the effects of MYR on memory impairment, neuroinflammation, and neurotrophic factors in sleep-deprived rats. We analyzed SD-induced cognitive and spatial memory, as well as pro-inflammatory cytokine levels during SD. SD model rats were intraperitoneally injected with 10 and 20 mg/kg/day MYR for 14 days. MYR administration significantly ameliorated SD-induced cognitive and spatial memory deficits; it also attenuated the SD-induced inflammatory response associated with nuclear factor kappa B activation in the hippocampus. In addition, MYR enhanced the mRNA expression of brain-derived neurotropic factor (BDNF) in the hippocampus. Our results showed that MYR improved memory impairment by means of anti-inflammatory activity and appropriate regulation of BDNF expression. Our findings suggest that MYR is a potential functional ingredient that protects cognitive function from SD.

Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles

  • Hyun, Sun Hee;Bhilare, Kiran D.;In, Gyo;Park, Chae-Kyu;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.33-38
    • /
    • 2022
  • Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.

Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells

  • Ji-Sun Lee;Ho-Young Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.266-275
    • /
    • 2024
  • Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.

Uncovering the Antibacterial Potential of a Peptide-Rich Extract of Edible Bird's Nest against Staphylococcus aureus

  • Thi-Phuong Nguyen;Tang Van Duong;Thai Quang Le;Khoa Thi Nguyen
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1680-1687
    • /
    • 2024
  • The diverse pharmacological properties of edible bird's nest (EBN) have been elucidated in recent years; however, investigations into its antibacterial effects are still limited. In the present study, we explored the antibacterial activity of a peptide-rich extract of EBN against Staphylococcus aureus, a notorious pathogen. The EBN extract (EEE) was prepared by soaking EBN in 80% ethanol for 2 days at 60℃. Biochemical analyses showed that peptides at the molecular weight range of 1.7-10 kDa were the major biochemical compounds in the EEE. The extract exhibited strong inhibition against S. aureus at a minimum inhibitory concentration (MIC) of 125 ㎍/ml and a minimum bactericidal concentration (MBC) of 250 ㎍/ml. This activity could be attributed to the impact of the extract on cell membrane integrity and potential, biofilm formation, and reactive oxidative species (ROS) production. Notably, the expression of biofilm- and ROS-associated genes, including intercellular adhesion A (icaA), icaB, icaC, icaD, and superoxide dismutase A (sodA), were deregulated in S. aureus upon the extract treatment. Our findings indicate a noteworthy pharmacological activity of EBN that could have potential application in the control of S. aureus.

The Effects of Jihwangyeumja and GamiJihwangyeumja water extract on The Cultured Primary Hippocampal Cell Damaged by XO/HX (지황음자와 가미지황음자 유출액이 XO/HX로 손상된 배양 해마신경세포에 미치는 효과)

  • Lee Yong Geun;Kim Sang Ho;Min Sang Jun;Yang Hee Suk;Jang Hyun Ho;Kim Tae Hean;Kang Hyung Won;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.989-1000
    • /
    • 2002
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine(XO/HX) and the effects of herbal extracts such as JHYJ and GJHYJ on the treatment of the toxic effects. For this purpose, experiments with the cultured hippocampal cells from new born mice were done. The results of these experiments were as follows. 1. XO/HX, a oxygen radical-generating system, decreased the survival rates of the cultured cells on XTT assay and INT assay, the amount of DNA syntheses, and the amount of neurofilaments, and increased the lipid peroxidation. 2. JHYJ and GJHYJ have the efficacy of increasing the survival rates of the cultured cells. 3. JHYJ and GJHYJ have the efficacy of increasing the amount of neurofilaments and of decreasing the lipid peroxidation. 4. JHYJ and GJHYJ have the efficacy of increasing the amount of DNA syntheses. From the above results, it is suggested that Jihwangyeumja and Gamijihwangyeumja have marked efficacy as a treatment for the damages caused by the XO/HX-mediated oxidative stress. And Jihwangyeumja and Gamijihwangyeumja are thought to have certain pharmacological effects. Further dinical study of this pharmacological effects of Jihwangyeumja and Gamijihwangyeumja should be complemented.

Effects of Chilbokyeumgamibang(七福飮加味方) on the Cerebral Cortex Neuron injured by Glucose Oxidase (칠복음가미방(七福飮加味方)이 Glucose Oxidase에 의해 손상(損傷)된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Choi Kong-Han;Gang Hyeong-Won;Lyu Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.1
    • /
    • pp.53-78
    • /
    • 1999
  • As the average life span have been lengthened and the rate of senile population have been raised, chronic degenerative diseases incident to aging has been increased rapidly and become a social problem. With this social background, recently, the facts that oxygen radicals(OR) have toxic effects on Central Nervous System and Peripheral Nervous System and cause neuropathy such as Parkinson's Disease, Alzheimer Disease have been turned out, and accordingly lots of studies on the mechanism of the toxic effects of OR on nerves, the diseases caused by OR and the approaches to curing the diseases have been made. The purpose of this study is to examine the toxic effects caused by Glucose Oxidase(GO) and the effects of herbal extracts such as Chilbokyeum(CBY), Chilbokyeumga Acori Rhizoma(CAR), Acori Rhizoma(AR) on the treatment of the toxic effects. For this purpose, experiments with the cultured cell from the cerebrums of new born mice were done. The results of these experiments were as follows. 1. GO, a oxygen radical, decreased the survival rate of the cultured cells on NR assay, MTT assay and amount of neurofilaments and increased the amount of total protein, lipid peroxidation and the amount of LDH. 2. CBY have efficacy of increasing the amount of neurofilaments and total protein and decreasing lipid peroxidation and the amount of LDH. 3. CAR have efficacy of increasing the amount of neurofilaments and total protein and decreasing lipid peroxidation and the amount of LDH. 4. AR have efficacy of increasing the amount of neurofilaments and total protein. From the above results, It is concluded that Chilbokyeumgamibang has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process. And Chilbokyeumgamibang is thought to have certain pharmacological effects on controlling over aging and treating Dementia. Further clinical study of this pharmacological effects of Chilbokyeumgamibang should be complemented.

  • PDF

EFFECTS OF NOVEL DITHIOL MALONATE DERIVATIVES ON LIVER LIPID PEROXIDATION AND ON MICROSOMAL ELECTRON TRANSPORT SYSTEM

  • Park, Keun-Hee;Lee, Jong-Wook
    • Toxicological Research
    • /
    • v.3 no.2
    • /
    • pp.97-110
    • /
    • 1987
  • The effects of 5 novel hepatotrophic agents, dithiol malonate derivatives (DMDs; DMD1-DMD5), on the liver microsomal lipid peroxidation induced by carbon tetrachloride $(CCl_4)$ and the correlations with the changes of microsomal electron transport system were investigated. All DMDs were found to inhibit the lipid peroxidation induced by $CCl_4$ in mice and rats as well in vitro liver microsomal system. Therefore, each DMD seemed to have direct mode of action on liver microsomes to inhibit the lipid peroxidation. As an ex vivo study, the induced lipid peroxidation by $CCl_4$ and the changes in electron transport system were determined with liver microsomes obtained from rats chronically treated with DMDs for 7 days. The induced lipid peroxide contents in liver microsomal system were lower in DMD1, DMD2 and DMD3 treated group, but higher in DMD4 and DMD5 group when compared to the control group. Cyt. p.450 contents in the microsomes were decreased by the treatment with DMD1, DMD2 and DMD3, but increased significantly by DMD4 with great extent and by DMD5 with less extent. The cyt. p-450 isozymes induced by treatment of DMD4 and DMD5 were identified as 3-methylcholanthrene (MC) type. The NADPH cyt. -C reductase activities of the microsomes treated with DMD1, DMD2, DMD4 and DMD5 were increased in the range of around 20% to 50%, but decreased with DMD3, All DMDs increased dyt. $-b_5$ content and did not alter NAdH-cyt, $-b_5$ reductase activities in the microsomes. In summary, the 5 novel hepatotrophic agents (DMDs) markedly protected against lipid peroxidation induced by $CCl_4$ in vivo and in vitro possibly through the mechanism of direct action on the liver microsomes. The degree of inhibition produced by DMDs on lipid peroxidation induced by $CCl_4$ seemed to coincide rather with cyt. p-450 contents than with other components of liver microsomal electron transport system including NADPH-cyt, -C reductase.

  • PDF