• 제목/요약/키워드: Pharmaceutical dose

검색결과 1,481건 처리시간 0.024초

Effect of Recombinant Human FSH on Ovulation, Pregnancy and In Vitro Fertilization in Androgen-Sterilized Mice

  • Koh, Sang-Bum;Seo, Kwang-Suk;Kim, Seung-Chul;Ahn, Byoung-Ok;Kim, Won-Bae;Lee, Sung-Hee
    • Archives of Pharmacal Research
    • /
    • 제25권3호
    • /
    • pp.357-363
    • /
    • 2002
  • The effect of a new rhFSH, PG-0801, on oocyte quality, ovulation and in vitro fertilization (IVF) was examined in androgen-sterilized mice. Experimental sterility was induced by a single subcutaneous injection of testosterone propionate (TP, 1 mg/head) into 5 day old female mice. Ovulation was generated in the 10 to 13-week old TP-injected mice by a subcutaneous rhFSH injection (1, 5 or 10 IU/head) followed 48 hours later by a second rhFSH injection (1, 5 or 10 IU/head). For comparison, a subcutaneous PMSG (5 IU/head) injection was used for folliculogenesis and a hCG (5 IU/head) injection was used for ovulation. These were administered using the same protocol. The eggs were harvested from the oviducts and counted 17 to 20 hours after the second injection. IVF was performed by adding sperms ($2{\times}10^{5}/ml{\;}to{\;}2{\times}10^{6}/ml$) to determine the functional activity of the eggs, and the fertilization rate was measured. In addition, the pregnancy rate and fetal development were examined after 15-17 days of gestation. The number of oocytes recovered from the rhFSH/rhFSH group increased dose-dependently and was slightly higher than that of the PMSG/hCG group. The pregnancy rates of the group receiving 1, 5, and 10 IU of rhFSH/rhFSH were 50%, 66.7%, and 75%, respectively, which were significantly higher than that of the control (untreated) group (0%). The numbers of viable fetuses in the 1, 5, and 10 IU/head of the rhFSH/rhFSH group ($8.0{\pm}1.50$, $8.9{\pm}1.02$, and $8.9{\pm}1.12$ fetuses/dam, respectively) were comparable to that of the 5 IU/head PMSG/hCG group ($9.4{\pm}0.94$). The mice receiving rhFSH/rhFSH and PMSG/hCG showed similar fertilization rates (around 65%) via the IVF procedure. These results demonstrate that a new rhFSH, PG-0801, may be useful for inducing ovulation in functionally infertile patients and for superovulation in ovulatory patients participating in assisted reproductive technology (ART) programs.

시스플라틴에 의한 $LLC-PK_1$의 알파-메틸글루코스 흡수 감소 기전 (Mechanism of Inhibition of ${\alpha}$-Methylglucose Uptake by Cisplatin in $LLC-PK_1$)

  • 서경원;김효정;정세영
    • 약학회지
    • /
    • 제40권6호
    • /
    • pp.705-712
    • /
    • 1996
  • We have previously shown that determination of glucose uptake using ${\alpha}$-methylglucose(${\alpha}$-MG) is very sensitive and rapid parameter for the assessment of loss of cellular fu nction in renal cell line($LLC-PK_1$). The present study was designed to elucidate the mechanism of inhibition of ${\alpha}$-MG uptake and the intracellular site of toxic action of cisplatin(CIS). $LLC-PK_1$ cells were exposed to various concentrations(5 ${\mu}$M-l00 ${\mu}$M) of CIS for 5 hrs or 24 hrs and ${\alpha}$-MG uptake was determined. Mitochondrial function was evaluated by measuring intracellular ATP content and MTT reduction. The activities of marker enzymes for the basolateral membrane(Na$^+$-K$^+$ ATPase) and brush border membrane (alkaline phosphatase: ALP) were also measured. CIS treatment significantly inhibited the ${\alpha}$-MG uptake in a time- and dose-dependent manner above 25 ${\mu}$M for 5 hrs. Intracellular ATP content and MTT reduction were affected by 24 hr-treatment of 50 ${\mu}$M CIS. The activities of Na$^+$-K$^+$ ATPase and ALP were significantly decreased at 10 ${\mu}$M and 5 ${\mu}$M of CIS for 24 hrs, respectively. The incubation with CIS for 5 hrs had no effects on the intracellular ATP content, MTT reduction and the activities of marker enzymes up to 100 ${\mu}$M. These results partly indicate that inhibition of ${\alpha}$-MG uptake by CIS may not be attributed to the disturbance of mitochondrial function or inhibition of the activity of Na$^+$-K$^+$ ATPase and can be resulted from direct effect of CIS on the Na$^+$/glucose cotransporter in brush border membrane. This study shows that additional mechanistic information, indicating the intracellular site of nephrotoxic action, can be gained by coupling the ${\alpha}$-MG uptake and ATP content or the activity of Na$^+$-K$^+$ ATPase.

  • PDF

Heme 산화효소 발현 유도체로서 Isoflavone-Free 검은콩 펩타이드의 항고혈압 활성 (Antihypertensive Effects of Novel Isoflavone-Free Black Soy Peptide Mixture as HO-1 Inducer)

  • 신미경;권용현;안창원;신동석;박수현;최보화;홍순선;강주희;박창신
    • 약학회지
    • /
    • 제56권3호
    • /
    • pp.191-197
    • /
    • 2012
  • We previously reported that the novel isoflavone-free peptide mixture (black soybean peptide, BSP) had several beneficial effects like antiobesity and hypotriglyceridemic effect. However, there are no reports for BSP on anti-hypertensive activity. BSP induced heme oxygenase-1 (HO-1) in HUVECs, thus investigated the HO-1-induced activity in HUVECs and the anti-hypertensive effects in SHR animal model. BSP significantly induced HO-1 expression both at transcriptional and protein levels in a time- and dose-dependent manner as measured by RT-PCR and Western blot analysis, respectively. These inductions were abolished by pretreatment of N-acetyl-cystein (NAC, 1~10 mM), but not by employing Tempol, a superoxide dismutase (SOD) mimetic (1~5 mM). As expected, enzymatic activity (~2 fold) determined by bilirubin formation assay and cGMP concentration (~6 fold) were significantly increased in BSP-treated cells. Based on the numerous evidences on the beneficial effects of HO-1 and our results, we investigated in vivo effects of BSP on the antihypertensive activity. The administration of BSP (1% in drinking water) significantly decreased mean blood pressure (BP) (from $218.6{\pm}6.99$ to $190.0{\pm}3.42$ mm Hg, p<0.01). This result indicates that BSP is strong inducer of HO-1 expression, which may be triggered by oxidative stress, and has anti-hypertensive activity.

담즙산염과 2-히드록시프로필-${\beta}$-시클로덱스트린을 이용한 아토르바스타틴칼슘의 용출 및 십이지장 점막 투과 증진 (Enhanced Dissolution and Duodenal Permeation of Atorvastatin Calcium Using Bile Salt and 2-Hydroxypropyl-${\beta}$-Cyclodextrin)

  • 최지원;전인구
    • 약학회지
    • /
    • 제56권3호
    • /
    • pp.164-172
    • /
    • 2012
  • This study was aimed to increase the solubility, dissolution and permeation rates of atorvastatin calcium (ATC) using bile salt and/or 2-hydroxypropyl-${\beta}$-cyclodextrin ($HP{\beta}CD$). From solubility studies, sodium deoxycholate (SDC) among bile salts studied was found to have the highest solubilizing effect on ATC ($4.4{\pm}0.4$ mg/ml), and the order of increasing solubility was SDC>sod. cholate>sod. glycocholate>sod. taurodeoxycholate>sod. taurocholate>conjugated bile acid. ATC solid dispersions were prepared at various ratios of drug to SDC and/or $HP{\beta}CD$, and evaluated by differential scanning calorimetry (DSC), dissolution studies and dissolution-permeation studies. DSC curves showed amorphous state of ATC in the physical mixture and solid dispersion. Dissolution rates of ATC-SDC solid dispersions and physical mixture were markedly increased at pH 6.8, but decreased at pH 1.2 with greater proportions of SDC due to the precipitation of SDC, compared with that of drug alone. On the other hand, dissolution rates of ATC-$HP{\beta}CD$ solid dispersion and physical mixture at pH 1.2 were varied with the ratio of drug to carriers. From duodenal permeation studies, it was found that fluxes of ATC (donor dose: 0.5 mg/3.5 ml) in the presence of 25 mM sodium glycocholate, SDC, sod. cholate and sod. taurocholate $(5.7{\pm}0.9$, $5.6{\pm}0.9$, $4.8{\pm}0.7$ and $4.6{\pm}0.9\;{\mu}g/cm^2/hr$, respectively) were enhanced, compared with drug alone ($3.4{\pm}0.9\;{\mu}g/cm^2/hr$). In the dissolution-permeation studies, 1 : 9 : 10 (w/w) ATC-SDC-$HP{\beta}CD$ solid dispersion increased the flux 2.2 times, compared with 1 : 5 : 4 (w/w) ATC-lactose-corn starch mixture as control. In conclusion, solid dispersions with bile salt and $HP{\beta}CD$ were found to be an effective means for increasing the dissolution and permeation rates of ATC.

인돌 (Indol-3-Carbinol)이 인체대장암세포 HT-29 세포의 투과성 밀착결합조절과 세포 침윤성 억제에 미치는 영향 (Indol-3-Carbinol Regulated Tight Junction Permeability and Associated-Protein Level and Suppressed Cell Invasion in Human Colon Cancer Cell Line, HT-29)

  • 김성옥;최영현;최원경
    • Journal of Nutrition and Health
    • /
    • 제41권1호
    • /
    • pp.13-21
    • /
    • 2008
  • 본 실험은 인돌의 인체 대장암세포의 경과 및 전이억제와 TJ 활성 조절에 미치는 영향을 알아보기 위해 실험하였다. 인돌은 십자화 야채류인 양배추, 컬리플라워, 브로클리 등에 존재하는 glucosinolate, glucobrassicin의 대사산물 이다. 본 연구의 결과는 인돌이 대장암 세포 HT-29에서 농도 의존적으로 세포증식 저해를 나타내었다. 상처회복 실험을 통한 세포이동성과 세포 침윤성 실험결과 인돌이 암세포의 이동과 침윤성을 억제하였고 투과성상피세포의 전기적 저항성 측정치는 인돌 처리 세포에서 증가하였다. HT-29 세포에서 과발현을 나타내는 밀착결합 단백질인 claudin-1, claudin-5 발현은 인돌 처리로 유전자의 전사수준과 단백질 수준에서 유의적인 감소를 나타내었다. 이상의 결과에서 인돌이 HT-29 세포의 밀착결합과 그 구성 단백질 중 claudin 발현 현상을 회복시키므로 암 경과와 전이 억제를 나타내었다. 결론적으로, 천연 항암화합물인 인돌은 대장암 세포 HT-29에서 밀착결합 단백질인 claudin-1, -5을 억제하여 밀착결합을 활성화하므로 암 진행과 전이를 억제할 수 있는 인돌에 의한 새로운 기전을 보고합니다.

Bacillus cereus에 대한 actinonin의 항균 효과 (Antimicrobial activities of actinonin against Bacillus cereus)

  • 정동윤;염수진;유연철;김종헌;이병휘;장훈녕;정희곤
    • 한국식품과학회지
    • /
    • 제48권6호
    • /
    • pp.560-564
    • /
    • 2016
  • 본 연구에서는 지금까지 알려진 바와 달리 항균활성의 적용범위가 모호한 actinonin을 대표적 식중독균인 B. cereus에 적용함으로써 식중독균에 대한 항균 효과에 대해 연구하였다. 계대배양된 대수기의 B. cereus에 actinonin을 처리하여 생장 저해 여부를 확인하였고, 96-well plate를 이용한 broth micro-dilution 방법과 agar disk diffusion 방법을 통해 actinonin의 B. cereus에 대한 항균활성을 측정해본 결과, actinonin의 농도에 비례하여 B. cereus의 생장이 저해되는 것으로 나타났다. 또한, actinonin의 처리에 따른 B. cereus의 세포 독성 측정 결과 actinonin이 B. cereus의 세포 독성 또한 억제하는 것을 확인하였다. 따라서, actinonin은 천연항균물질로서 B. cereus에 의한 식품 오염을 억제하고 식중독 예방 및 잠재적 치료제로서 적용 될 가능성이 있는 것으로 관찰되었으며, 나아가 다른 식중독균들에 대한 적용 가능성 탐색과 관련한 연구가 필요할 것으로 생각된다.

Alteration of X-linked Inhibitors of Apoptosis (XIAP) Expression in Rat Model with DEN-induced Hepatocellular Carcinogenesis

  • Chang, Jae-Jin;Jeon, Su-Yeon;Song, Ji-Ye;Kim, Jin-Hee;Li, Lan;Park, Dae-Hun;Lee, Yun-Lyul;Park, Jeong-Joo;Woo, Dong-Wook;Kim, Gi-Jin;Lee, Min-Jae
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.278-284
    • /
    • 2008
  • The X-linked inhibitor of apoptosis (XIAP) is a member of a novel family of inhibitors of apoptosis and has several BIR domains (BIR1, BIR2, and BIR3) and a carboxy-terminal RING zinc-finger. Since suppressionof apoptosis is fundamentally important for carcinogenesis and tumor growth, we investigated the expression and function of XIAP in DEN-induced carcinogenesis using rat model. Wistar rats were injected intraperitoneally with DEN at a dose of 50 mg/kg in twice a week for 12 weeks (Group II) and 16 weeks (Group III) followed by the recovery periods, respectively. The evaluation of DEN-induced carcinogenesis carried out the blood, RT-PCR, histopathological and western blot analysis. The level of blood chemistry including GOT/GPT, albumin, and total bilirubin were significantly exchanged comparing to control and Group I/Group II. The expression of albumin and collagen mRNA were significantly exchanged (P<0.05) in both groups. In addition, AFP mRNA expression decreased more after recovery periods than Group II. XIAP was expressed constitutively in normal rat liver as well as DEN-induced Groups I and Group II. In addition, XIAP expression increased more in Group I with 4 weeks recovery periods than Group I. However, XIAP expression shown to increase in Group lI, otherwise, it was decreased in Group II with 10 weeks repair periods. Taken together, these results suggest the alteration of XIAP expression could be involved in hepatocellular carcinogenesis.

시판 약물의 시토크롬 2J2 약물대사효소 저해능 탐색 (Screening of Potential Anticancer Compounds from Marketed Drugs: Aripiprazole, Haloperidol, Miconazole, and Terfenadine Inhibit Cytochrome P450 2J2)

  • 류광현
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1558-1564
    • /
    • 2011
  • CYP2J2는 치료약물 및 아라키돈산과 같은 내인성 화합물의 대사에 중요한 역할을 수행하고 있는 효소이다. 최근, CYP2J2 단백질이 인체 종양 조직이나 종양 세포주에 과발현되어 있고, CYP2J2 효소의 작용에 의해 생성된 에폭시에이코사트리에논산(EETs)이 세포사멸을 방지한다는 것이 보고되었다. 본 연구는 시판중인 약물 120종을 대상으로 시토크롬 2J2 동종효소에 저해능을 가지는 화합물을 발굴하고자 하였다. 인체 간 마이크로솜 시료에 아스테미졸과 NADPH 재생성계 및 약물(50 ${\mu}M$)을 첨가한 후 15분간 반응시켜 생성된 대사물을 LC/MS/MS를 이용하여 분석하여 시토크롬 2J2 동종효소 활성의 변화를 평가하였다. 그 결과 할로페리돌, 터페나딘, 아리피프라졸, 미코나졸의 순으로 CYP2J2 효소 활성 저해능을 보였다. 미코나졸은 CYP2J2에 의해 매개되는 에바스틴($IC_{50}$=11.2 ${\mu}M$) 및 터페나딘($IC_{50}$=2.2 ${\mu}M$) 대사를 강력하게 저해하였다. 터페나딘 또한 CYP2J2 매개 에바스틴 대사를 농도 의존적으로 저해하였다($IC_{50}$=13.6 ${\mu}M$). 향후, 이들 약물을 대상으로 한 항암 활성 평가가 필요할 것으로 판단된다.

피부세포에서 옥돔 비늘로부터 추출한 펩타이드의 UVB에 대한 산화적 손상 및 광 노화 억제 (Peptides-derived from Scales of Branchiostegus japonicus Inhibit Ultraviolet B-induced Oxidative Damage and Photo-aging in Skin Cells)

  • 오민창;김기천;고창익;안용석;현진원
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.269-275
    • /
    • 2015
  • 생체에서 가장 많은 비율로 분포하고 있는 콜라겐 펩타이드는 동물의 뼈와 해양 생물의 비늘에 많이 함유되어 있다. 콜라겐은 동물 생체의 여러 결합조직에서 구조 단백질로 흔하게 발견된다. 또한, 이들은 생물 의료 자재, 제약, 화장품, 식품 및 가죽 산업에 널리 이용된다. 각종 어류 비늘에서 추출된 펩타이드는 UVB 조사에 의해 유도된 피부의 손상 및 광 노화에 대한 보호 효과가 있었다. 그럼에도 불구하고, UVB 조사에 대한 옥돔 비늘 유래의 펩타이드 특성은 명확히 알려져 있지 않다. 이 연구에서는 옥돔 비늘 추출물에서 분리된 1 kDa 이상(HMP)과 1 kDa 이하(LMP)의 펩타이드를 이용하여 UVB 조사에 의해 유도된 피부 손상과 광 노화에 대한 효과를 연구하였다. 이들 펩타이드는 농도 의존적으로 DPPH 라디칼 소거능을 보였으며 LMP는 HaCaT 인간 피부세포에서 UVB 조사에 의해 유도된 세포 지질 과산화 산물인 8-isoprostane 생성을 억제하였다. 그리고 LMP와 HMP는 B16F10 마우스 흑색종 세포에서 tyrosinase 활성 및 melanin 함량을 감소시켰으며 또한 HaCaT 세포에서 UVB로 유도된 elastase 활성을 감소시켰고 matrix metalloproteinase-1의 활성을 감소시켰다. 이러한 결과는 옥돔 비늘에서 유래된 펩타이드가 미백효과, 항산화제 및 광 노화 억제제로서 유용한 물질이 될 것으로 기대된다.

MPTP-induced vulnerability of dopamine neurons in A53T α-synuclein overexpressed mice with the potential involvement of DJ-1 downregulation

  • Lee, Seongmi;Oh, Seung Tack;Jeong, Ha Jin;Pak, Sok Cheon;Park, Hi-Joon;Kim, Jongpil;Cho, Hyun-seok;Jeon, Songhee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.625-632
    • /
    • 2017
  • Familial Parkinson's disease (PD) has been linked to point mutations and duplication of the ${\alpha}$-synuclein (${\alpha}$-syn) gene. Mutant ${\alpha}$-syn expression increases the vulnerability of neurons to exogenous insults. In this study, we developed a new PD model in the transgenic mice expressing mutant hemizygous (hemi) or homozygous (homo) A53T ${\alpha}$-synuclein (${\alpha}$-syn Tg) and their wildtype (WT) littermates by treatment with sub-toxic (10 mg/kg, i.p., daily for 5 days) or toxic (30 mg/kg, i.p., daily for 5 days) dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase and Bcl-2 levels were reduced in the ${\alpha}$-syn Tg but not WT mice by sub-toxic MPTP injection. In the adhesive removal test, time to remove paper was significantly increased only in the homo ${\alpha}$-syn Tg mice. In the challenging beam test, the hemi and homo ${\alpha}$-syn Tg mice spent significantly longer time to traverse as compared to that of WT group. In order to find out responsible proteins related with vulnerability of mutant ${\alpha}$-syn expressed neurons, DJ-1 and ubiquitin enzyme expressions were examined. In the SN, DJ-1 and ubiquitin conjugating enzyme, UBE2N, levels were significantly decreased in the ${\alpha}$-syn Tg mice. Moreover, A53T ${\alpha}$-syn overexpression decreased DJ-1 expression in SH-SY5Y cells. These findings suggest that the vulnerability to oxidative injury such as MPTP of A53T ${\alpha}$-syn mice can be explained by downregulation of DJ-1.