DOI QR코드

DOI QR Code

Antimicrobial activities of actinonin against Bacillus cereus

Bacillus cereus에 대한 actinonin의 항균 효과

  • Jung, Dongyun (Department of Food Science and Technology, Chungnam National University) ;
  • Yum, Su-Jin (Department of Food Science and Technology, Chungnam National University) ;
  • Yu, Yeon-Cheol (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Jong-Heon (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Byung-Hwi (Department of Food Science and Technology, Chungnam National University) ;
  • Jang, Hoon-Nyung (Department of Food Science and Technology, Chungnam National University) ;
  • Jeong, Hee Gon (Department of Food Science and Technology, Chungnam National University)
  • 정동윤 (충남대학교 식품공학과) ;
  • 염수진 (충남대학교 식품공학과) ;
  • 유연철 (충남대학교 식품공학과) ;
  • 김종헌 (충남대학교 식품공학과) ;
  • 이병휘 (충남대학교 식품공학과) ;
  • 장훈녕 (충남대학교 식품공학과) ;
  • 정희곤 (충남대학교 식품공학과)
  • Received : 2016.07.19
  • Accepted : 2016.09.23
  • Published : 2016.12.31

Abstract

The objective of this study was to investigate the anti-Bacillus cereus activity of actinonin. Actinonin inhibited the growth of B. cereus in a dose dependent manner. The growth-inhibitory activity of actinonin was evaluated using a broth micro-dilution method, and minimum inhibitory concentration (MIC) and agar disk diffusion tests. B. cereus showed high susceptibility to actinonin in a concentration-dependent manner and MIC was determined to be $0.192{\mu}g/mL$. Additionally, 1 and 2 mM actinonin induced formation of B. cereus inhibition zones. In addition, as compared to B. cereus alone, B. cereus added with $10{\mu}M$ actinonin showed a lower level of cytotoxicity in HeLa cells in vitro. Thus, this study revealed that actinonin could be a potential source of a natural antimicrobial agent or a pharmaceutical component against B. cereus.

본 연구에서는 지금까지 알려진 바와 달리 항균활성의 적용범위가 모호한 actinonin을 대표적 식중독균인 B. cereus에 적용함으로써 식중독균에 대한 항균 효과에 대해 연구하였다. 계대배양된 대수기의 B. cereus에 actinonin을 처리하여 생장 저해 여부를 확인하였고, 96-well plate를 이용한 broth micro-dilution 방법과 agar disk diffusion 방법을 통해 actinonin의 B. cereus에 대한 항균활성을 측정해본 결과, actinonin의 농도에 비례하여 B. cereus의 생장이 저해되는 것으로 나타났다. 또한, actinonin의 처리에 따른 B. cereus의 세포 독성 측정 결과 actinonin이 B. cereus의 세포 독성 또한 억제하는 것을 확인하였다. 따라서, actinonin은 천연항균물질로서 B. cereus에 의한 식품 오염을 억제하고 식중독 예방 및 잠재적 치료제로서 적용 될 가능성이 있는 것으로 관찰되었으며, 나아가 다른 식중독균들에 대한 적용 가능성 탐색과 관련한 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  2. Ricke SC, Kundinger MM, Miller DR, Keeton JT. Alternatives to antibiotics: Chemical and physical antimicrobial interventions and foodborne pathogen response. Poult. Sci. 84: 667-675 (2005) https://doi.org/10.1093/ps/84.4.667
  3. Unemo M, Del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: A major global public health problem in the 21st century. Microbiol. Spectr. 4: 10.1128/microbiolspec.EI10-0009-2015 (2016)
  4. Walsh C, Fanning S. Antimicrobial resistance in foodborne pathogens-A cause for concern?. Curr. Drug Targets 9: 808-815 (2008) https://doi.org/10.2174/138945008785747761
  5. Cho KH, Park SG. Antibacterial effects on Bacillus stearothermophilus by adding natural grapefruit seed extracts in soymilk. J. Korean Ind. Eng. Chem. 16: 139-143 (2004)
  6. Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G, Young DC, Margolis PS, Wu C, Ni ZJ, Trias J, White RJ, Yuan Z. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39: 1256-1262 (2000) https://doi.org/10.1021/bi992245y
  7. Lee MD, She YH, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG, Sirotnak FM, Scheinberg DA. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J. Clin. Invest. 114: 1107-1116 (2004) https://doi.org/10.1172/JCI200422269
  8. Yekkour A, Meklat A, Bijani C, Toumatia O, Errakhi R, Lebrihi A, Mathieu F, Zitouni A, Sabaou N. A novel hydroxamic acidcontaining antibiotic produced by a Saharan soil-living Streptomyces strain. Lett. Appl. Microbiol. 60: 589-596 (2015) https://doi.org/10.1111/lam.12412
  9. Pratt LM, Beckett RP, Davies SJ, Launchbury SB, Miller A, Spavold ZM, Todd RS, Whittaker M. Asymmetric synthesis of BB-3497-A potent peptide deformylase inhibitor. Bioorg. Med. Chem. Lett. 11: 2585-2588 (2001) https://doi.org/10.1016/S0960-894X(01)00509-1
  10. Bashiardes G, Bodwell GJ, Davies SG. Asymmetric-synthesis of (-)-actinonin and (-)-epi-actinonin. J. Chem. Soc. Perkin Trans. 1: 459-469 (1993)
  11. Sayama K, Goto Y, Iguchi T, Takeda Y, Matsuzawa A. Effects of an antibiotic protease inhibitor, actinonin on the growth within collagen gels of non-metastatic and metastatic mouse mammary tumors of the same origin. Cancer Lett. 94: 171-177 (1995) https://doi.org/10.1016/0304-3835(95)03847-P
  12. Adams JM, Capecchi MR. N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc. Natl. Acad. Sci. 55: 147-55 (1966) https://doi.org/10.1073/pnas.55.1.147
  13. Mazel D, Pochet S, Marliere P. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J. 13: 914-23 (1994)
  14. Margolis PS, Hackbarth CJ, Young DC, Wang W, Chen D, Yuan Z, White R, Trias J. Peptide deformylase in Staphylococcus aureus: Resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob. Agents Ch. 44: 1825-31 (2000) https://doi.org/10.1128/AAC.44.7.1825-1831.2000
  15. Oh MH, Ham JS, Cox JM. Diversity and toxigenicity among members of the Bacillus cereus group. Int J. Food Microbiol. 152: 1-8 (2012) https://doi.org/10.1016/j.ijfoodmicro.2011.09.018
  16. Agata N, Ohta M, Mori M, Isobe M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129: 17-20 (1995)
  17. Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487 (2004) https://doi.org/10.1002/mnfr.200400055
  18. Granum PE. Bacillus cereus and its toxins. Soc. Appl. Bacteriol. Symp. Ser. 23: 61S-66S (1994)
  19. Liu H, Zhao Y, Zhao D, Gong T, Wu Y, Han H, Xu T, Peschel A, Han S, Qu D. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg. Microbes. Infect. 4: 10.1038/emi.2015.1 (2015)
  20. Kim JJ, In YW, Oh SW. Antimicrobial activity of citral against Salmonella Typhimurium and Staphylococcus aureus. Korean J. Food Sci. Technol. 43: 791-794 (2011) https://doi.org/10.9721/KJFST.2011.43.6.791
  21. Brudzynski K, Abubaker K, Wang T. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide. Front. Microbiol. 3: 242 (2012)
  22. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Forth Informational Supplement. CLSI document M100-S24, Wayne, PA, USA. (2014)
  23. Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A. Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med. 11: 29 (2011) https://doi.org/10.1186/1472-6882-11-29
  24. Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 26: 1533-1538 (2010) https://doi.org/10.1007/s11274-010-0325-7
  25. Gutierrez-Larrainzar M, Rua J, Caro I, de Castro C, de Arriaga D, Garcia-Armesto MR, del Valle P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control. 26: 555-563 (2012) https://doi.org/10.1016/j.foodcont.2012.02.025
  26. Park KS, Ono T, Rokuda M, Jang MH, Okada K, Idia T, Honda T. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665 (2004) https://doi.org/10.1128/IAI.72.11.6659-6665.2004

Cited by

  1. Antimicrobial effect of a combination of herb extract and organic acid against Bacillus subtilis spores vol.26, pp.5, 2017, https://doi.org/10.1007/s10068-017-0164-5