References
- Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
- Ricke SC, Kundinger MM, Miller DR, Keeton JT. Alternatives to antibiotics: Chemical and physical antimicrobial interventions and foodborne pathogen response. Poult. Sci. 84: 667-675 (2005) https://doi.org/10.1093/ps/84.4.667
- Unemo M, Del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: A major global public health problem in the 21st century. Microbiol. Spectr. 4: 10.1128/microbiolspec.EI10-0009-2015 (2016)
- Walsh C, Fanning S. Antimicrobial resistance in foodborne pathogens-A cause for concern?. Curr. Drug Targets 9: 808-815 (2008) https://doi.org/10.2174/138945008785747761
- Cho KH, Park SG. Antibacterial effects on Bacillus stearothermophilus by adding natural grapefruit seed extracts in soymilk. J. Korean Ind. Eng. Chem. 16: 139-143 (2004)
- Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G, Young DC, Margolis PS, Wu C, Ni ZJ, Trias J, White RJ, Yuan Z. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39: 1256-1262 (2000) https://doi.org/10.1021/bi992245y
- Lee MD, She YH, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG, Sirotnak FM, Scheinberg DA. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J. Clin. Invest. 114: 1107-1116 (2004) https://doi.org/10.1172/JCI200422269
- Yekkour A, Meklat A, Bijani C, Toumatia O, Errakhi R, Lebrihi A, Mathieu F, Zitouni A, Sabaou N. A novel hydroxamic acidcontaining antibiotic produced by a Saharan soil-living Streptomyces strain. Lett. Appl. Microbiol. 60: 589-596 (2015) https://doi.org/10.1111/lam.12412
- Pratt LM, Beckett RP, Davies SJ, Launchbury SB, Miller A, Spavold ZM, Todd RS, Whittaker M. Asymmetric synthesis of BB-3497-A potent peptide deformylase inhibitor. Bioorg. Med. Chem. Lett. 11: 2585-2588 (2001) https://doi.org/10.1016/S0960-894X(01)00509-1
- Bashiardes G, Bodwell GJ, Davies SG. Asymmetric-synthesis of (-)-actinonin and (-)-epi-actinonin. J. Chem. Soc. Perkin Trans. 1: 459-469 (1993)
- Sayama K, Goto Y, Iguchi T, Takeda Y, Matsuzawa A. Effects of an antibiotic protease inhibitor, actinonin on the growth within collagen gels of non-metastatic and metastatic mouse mammary tumors of the same origin. Cancer Lett. 94: 171-177 (1995) https://doi.org/10.1016/0304-3835(95)03847-P
- Adams JM, Capecchi MR. N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc. Natl. Acad. Sci. 55: 147-55 (1966) https://doi.org/10.1073/pnas.55.1.147
- Mazel D, Pochet S, Marliere P. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J. 13: 914-23 (1994)
- Margolis PS, Hackbarth CJ, Young DC, Wang W, Chen D, Yuan Z, White R, Trias J. Peptide deformylase in Staphylococcus aureus: Resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob. Agents Ch. 44: 1825-31 (2000) https://doi.org/10.1128/AAC.44.7.1825-1831.2000
- Oh MH, Ham JS, Cox JM. Diversity and toxigenicity among members of the Bacillus cereus group. Int J. Food Microbiol. 152: 1-8 (2012) https://doi.org/10.1016/j.ijfoodmicro.2011.09.018
- Agata N, Ohta M, Mori M, Isobe M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129: 17-20 (1995)
- Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487 (2004) https://doi.org/10.1002/mnfr.200400055
- Granum PE. Bacillus cereus and its toxins. Soc. Appl. Bacteriol. Symp. Ser. 23: 61S-66S (1994)
- Liu H, Zhao Y, Zhao D, Gong T, Wu Y, Han H, Xu T, Peschel A, Han S, Qu D. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg. Microbes. Infect. 4: 10.1038/emi.2015.1 (2015)
- Kim JJ, In YW, Oh SW. Antimicrobial activity of citral against Salmonella Typhimurium and Staphylococcus aureus. Korean J. Food Sci. Technol. 43: 791-794 (2011) https://doi.org/10.9721/KJFST.2011.43.6.791
- Brudzynski K, Abubaker K, Wang T. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide. Front. Microbiol. 3: 242 (2012)
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Forth Informational Supplement. CLSI document M100-S24, Wayne, PA, USA. (2014)
- Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A. Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med. 11: 29 (2011) https://doi.org/10.1186/1472-6882-11-29
- Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 26: 1533-1538 (2010) https://doi.org/10.1007/s11274-010-0325-7
- Gutierrez-Larrainzar M, Rua J, Caro I, de Castro C, de Arriaga D, Garcia-Armesto MR, del Valle P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control. 26: 555-563 (2012) https://doi.org/10.1016/j.foodcont.2012.02.025
- Park KS, Ono T, Rokuda M, Jang MH, Okada K, Idia T, Honda T. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665 (2004) https://doi.org/10.1128/IAI.72.11.6659-6665.2004
Cited by
- Antimicrobial effect of a combination of herb extract and organic acid against Bacillus subtilis spores vol.26, pp.5, 2017, https://doi.org/10.1007/s10068-017-0164-5