• 제목/요약/키워드: Phantoms

검색결과 329건 처리시간 0.026초

도전율 및 유전율이 다른 병소의 검출을 위한 320-채널 다주파수 Trans-Admittance Scanner(TAS) (320-Channel Multi-Frequency Trans-Admittance Scanner(TAS) for Anomaly Detection)

  • 오동인;이민형;김희진;우응제
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.84-94
    • /
    • 2007
  • In order to collect information on local distribution of conductivity and permittivity underneath a scan probe, we developed a multi-frequency trans-admittance scanner (TAS). Applying a sinusoidal voltage with variable frequency on a chosen distal part of a human body, we measure exit currents from 320 grounded electrodes placed on a chosen surface of the subject. The electrodes are packaged inside a small and light scan probe. The system includes one voltage source and 17 digital ammeters. Front-end of each ammeter is a current-to-voltage converter with virtual grounding of a chosen electrode. The rest of the ammeter is a voltmeter performing digital phase-sensitive demodulation. Using resistor loads, we calibrate the system including the scan probe to compensate frequency-dependent variability of current measurements and also inter-channel variability among multiple. We found that SNR of each ammeter is about 85dB and the minimal measurable current is 5nA. Using saline phantoms with objects made from TX-151, we verified the performance of the lesion estimation algorithm. The error rate of the depth estimation was about 19.7%. For the size estimate, the error rate was about 15.3%. The results suggest improvement in lesion estimation algorithm based on multi-frequency trans-admittance data.

피부의 탄성변화에 따른 피부 가압과 복귀시간 측정을 통한 정량적 림프부종 진단 시스템 개발 (Development of Quantitative Lymphedema Screening System to Monitor Change in Skin Elasticity through the Measurement of Indentation Force and Return Time)

  • 서종현;조창노;김성천;정승현;고은실;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권4호
    • /
    • pp.170-176
    • /
    • 2013
  • Lymphedema is a phenomenon in which fluid is accumulated inside tissues due to the damaged lymphatic systems. Lymphedema can cause complications such as lymphangitis, infection, changes in skin texture, fibrosis, and lymphangiosarcoma. In this study, a lymphedema screening system based on the elasticity of the skin is proposed to easily quantify lymphedema. The developed probe consists of touch sensors, a load cell and hall-effect sensors to measure the indentation force on the skin and the return time of the skin. The developed system can be used to estimate the change in the elasticity of the skin to quantify lymphedema. The system was tested with a thyroid phantom and gelatin phantoms of different concentrations and the resulting force and the time were recorded. It was found that the increase in the elasticity leads to a higher indentation force and shorter return time. This shows that the developed system can monitor the change in the skin elasticity by measuring the return time and the indentation force. The feasibility of the system in clinical applications will be evaluated in the future study.

3차원 안모분석을 위한 저선량 Multi-detector CT 영상의 유효선량 및 화질 평가 (Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning)

  • 정기정;한원정;김은경
    • Imaging Science in Dentistry
    • /
    • 제40권1호
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose : This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. Materials and Methods : 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Results : Effective doses in ${\mu}Sv$ ($E_{2007}$) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. Conclusion : From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

의학물리 분야에 사용하기 위한 PMCEPT 몬테카를로 도즈계산용 코드 검증 (Verification of the PMCEPT Monte Carlo dose Calculation Code for Simulations in Medical Physics)

  • 금오연
    • 한국의학물리학회지:의학물리
    • /
    • 제19권1호
    • /
    • pp.21-34
    • /
    • 2008
  • 환자의 CT자료를 기반으로 만들어진 3차원상의 표적물질에 전자 및 광자의 전달 현상을 계산하는 몬테카를로(MC) 도즈계산용 병렬프로그램 (PMCEPT 코드)을 개발하여 베어울프 PC 클러스터에 탑제하였다. 시뮬레이션에서 오차를 최소화하고 코드를 더욱 발전시키기 위해서는 현재의 MC 코드의 한계를 아는 것이 매우 유익하다. 이러한 관점에서 저자는 PMCEPT코드를 이용하여 이질 혹은 동질의 표적물질에서 표준화된 깊이 도즈를 계산하여 잘 알려진 다른 코드들, MCNP5, EGS4, DPM, GEANT4 및 실험결과와 비교를 하였다. PMCEPT결과는 이질 혹은 동질의 표적에서 다른 코드들과 $1{\sim}3%$ 오차 범위 안에서 잘 일치하였다. 계산시간 비교에 있어서도 PMCEPT 코드가 MCNP5 보다는 약 20배, GEANT4코드보다는 약 3배정도 빨랐다. 이러한 결과를 종합하면, PMCEPT코드는 의학물리분야의 시뮬레이션 코드로 사용하기에 매우 좋은 것으로 사료된다.

  • PDF

필름 및 tissue equivalent 팬톰을 이용한 NEC LINAC 6 MVX 소조사면에 대한 선량분포 측정 (Measurement of Dose Distribution in Small Fields of NEC LINAC 6 MVX Using Films and Tissue Equivalent Phantoms)

  • Suh, Tae-Suk;Park, Dong-Rak;Choe, Bo-Young;Yoon, Sei-Chul;Jang, Hong-Seok;Park, Il-Bong;Kim, Moon-Chan;Bahk, Yong-Whee;Shin, Kyung-Sub
    • 한국의학물리학회지:의학물리
    • /
    • 제4권2호
    • /
    • pp.9-17
    • /
    • 1993
  • 본 논문의 목적의 NEC LINAC 6 MVX 선의 소조사면에 대한 선량분포를 복잡한 물팬톰 및 ion chamber대신 film 및 고체 물팬톰을 이용하여 간단히 측정하고 분석하는 시스템을 개발하는 데 있다. 단일 선속측정을 위하여 필름과 고체 물팬톰이 이용되었으며, 측정된 데이타는 percent depth dose (PDD), off-axis ratio (OAR) 등을 포함하며, 한변이 1, 2, 3cm의 정사각형 소조사면에 대하여 측정이 이루어 졌다. 또한 Output factor측정은 ion chamber로 측정되었으며, 필름에 의하여 측정된 PDD, OAR 등은 ion chamber측정기로 측정된 값과 비교 검토되었다. 필름으로 부터 측정된 PDD값으로 부터 환산식을 이용하여 tissue maximum ratio (TMR) 값을 얻었으며, 본 실험에서 얻어진 TMR, OAR 값들은 같은 에너지를 나타내는 Philips LINAC의 선량 데이타와 유사한 결과를 보여주었다. 고체 물팬톰 및 필름을 이용한 소조사면 측정은 간편하고도 유용한 방법이었으며, 특히, 자체 개발된 필름팬톰은 뇌정위적 방사선 수술을 위한 OAR 선량을 측정하는 데 유용하였다.

  • PDF

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Determination of Initial Beam Parameters of Varian 2100 CD Linac for Various Therapeutic Electrons Using PRIMO

  • Maskani, Reza;Tahmasebibirgani, Mohammad Javad;Hoseini-Ghahfarokhi, Mojtaba;Fatahiasl, Jafar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7795-7801
    • /
    • 2015
  • The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.

APPLICATION OF A DUAL-ENERGY MONOCHROMATIC XRAY CT ALGORITHM TO POLYCHROMATIC X-RAY CT: A FEASIBILITY STUDY

  • Chang, S.;Lee, H.K.;Cho, G.
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.61-70
    • /
    • 2012
  • In this study, a simple post-reconstruction dual-energy computed tomography (CT) method is proposed. A dual-energy CT algorithm for monochromatic x-rays was adopted and applied to the dual-energy CT of polychromatic x-rays by assigning a representative mono-energy. The accuracy of algorithm implementation was tested with mathematical phantoms. To test the sensitivity of this algorithm to the inaccuracy of representative energy value in energy values, a simulation study was performed with mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single-energy, mean energy and equivalent energy were used, and the results were compared. The feasibility of the proposed method was experimentally tested with two different micro-CTs and a test phantom made of polymethyl methacrylate (PMMA), water, and graphite. The dual-energy calculations were carried out with CT images of all possible energy pairs among 40, 50, 60, 70, and 80 kVp. The effective atomic number and the electron density values obtained from the proposed method were compared with theoretical values. The results showed that, except the errors in the effective atomic number of graphite, most of the errors were less than 10 % for both CT scanners, and for the combination of 60 kVp and 70 kVp, errors less than 6.0 % could be achieved with a Polaris 90 CT. The proposed method shows simplicity of calibration, demonstrating its practicality and feasibility for use with a general polychromatic CT.

국소 최소자승 잡음 감소 필터를 이용한 광자선 및 전자선 몬테칼로 선량 계산 시간 단축 (Monte Carlo Photon and Electron Dose Calculation Time Reduction Using Local Least Square Denoising Filters)

  • 정광호;서태석;조병철;진호상
    • 한국의학물리학회지:의학물리
    • /
    • 제16권3호
    • /
    • pp.138-147
    • /
    • 2005
  • 몬테칼로 선량계산 시 적절한 정확도를 얻기 위해서는 계산입자수를 늘려야 하고 그로 인해 계산 시간이 오래 걸리게되므로 일상적 치료계획의 선량계산 방법으로 이용되지 못했다. 본 연구에서는 몬테칼로 모의실험 시 계산입자 수를 줄여서 선량계산을 수행한 후 잡음 감소 필터를 적용하여 선량계산 결과를 개선하고자 하였다. 이를 위해 국소 최소자승 잡음 감소 필터를 제작하고 광자선 및 전자선 균질/비균질 팬텀 내 선량계산 결과에 대하여 적용하여 선택적 여과를 수행하였으며 그 유효성을 등선량 곡선 비교 및 감마시험을 통하여 검증하였다. 연구 결과 통계적 불확실도를 2$\%$ 이내로 유지하기 위해 필요한 계산입자수의 10$\%$ 이하의 계산입자 수를 이용하여 몬테칼로 선량계산 뒤 후처리한 결과가 기준계산 입자수를 이용하여 얻은 몬테칼로 선량계산 결과와 유사해질 수 있음을 확인하였다.

  • PDF

Development of a Web-Based Program for Cross-Calibration and Record Management of Radiation Measuring Equipment

  • Park, So Hyun;Lee, Rena;Kim, Kyubo;Ahn, Sohyun;Lim, Sangwook;Cho, Samju
    • 한국의학물리학회지:의학물리
    • /
    • 제30권2호
    • /
    • pp.59-63
    • /
    • 2019
  • Purpose: To manage radiation measurement equipment, a web-based management program has been developed in this study. Materials and Methods: This program is based on a web service and Java Server Pages (JSP) and employs compatibility and accessibility. Results: The first step in the workflow has been designed to create accounts for each user or organization and to log in. The program consists of two parts: fields for listed instruments, and measurement information. The instruments for measuring radiation listed in this program are as follows: ionization chambers, survey meters, thermometers, barometers, electrometers, and phantoms. Instrument properties can be put in the recording fields and browsing for associated instruments can be performed. The main part of the program is the cross-calibration for each ion chamber. For instance, the ionization chamber to be used as a relative dosimeter can be registered by cross-calibration data with a reference chamber calibrated by an accredited laboratory. This program supports methods using the central axis transfer theory for cross-calibration for the ionization chambers. The reference and field ionization chambers were placed in a solid water phantom along the beam central axis at two different depths, and then the positions were switched. Each measured value was used for calculating the cross-calibration factor. Conclusions: Because many instruments are used and managed in radiation oncology departments, systematic, traceable recording is very important. The web-based program developed in this study is expected to be used effectively in the maintenance of radiation measurement instruments.