• Title/Summary/Keyword: Phantom f4

Search Result 116, Processing Time 0.025 seconds

GEANT4-based Monte Carlo Simulation of Beam Quality Correction Factors for the Leksell Gamma Knife® PerfexionTM

  • Schaarschmidt, Thomas;Kim, Tae Hoon;Kim, Yong Kyun;Yang, Hye Jeong;Chung, Hyun-Tai
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1814-1820
    • /
    • 2018
  • With the publication of TRS-483 in late 2017 the IAEA has established an international code of practice for reference dosimetry in small and non-standard fields based on a formalism first suggested by Alfonso et al. in 2008. However, data on beam quality correction factors ($k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$) for the Leksell Gamma $Knife^{(R)}$ $Perfexion^{TM}$ is scarce and what little data is available was obtained under conditions not necessarily in accordance with the IAEA's recommendations. This study constitutes the first systematic attempt to calculate those correction factors by applying the new code of practice to Monte Carlo simulation using the GEANT4 toolkit. $k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$ values were determined for three common ionization chamber detectors and five different phantom materials, with results indicating that in most phantom materials, all chambers were well suited for reference dosimetry with the Gamma $Knife^{(R)}$. Similarities and differences between the results of this study and previous ones were also analyzed and it was found that the results obtained herein were generally in good agreement with earlier PENELOPE and EGSnrc studies.

A Study of Quality Control Environment of Mammography (유방촬영의 화질관리 환경에 대한 고찰)

  • Hwang, In-Sun;Kim, Young-Keun;Joo, Hyung-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.133-138
    • /
    • 2010
  • The purpose of this study was to survey and test quality control of mammography system. The conclusion of this study is as follows ; First, The rate of pass for phantom image test shows that Film-Screen mammography system(F/S) and computed mammography system(CR) is 80%, Indirect digital mammography system(DR) is 100%. Second, The test of exposure dose shows that F/S is 921 mR. CR is 1,140 mR, DR is 474 mR. The grade of this testament is CR > F/S > DR. Third, The test of average glandular dose shows that F/S is 1,336 mGy, CR is 1,635 mGy, DR is 1,26 mGy. The grade of this testament is CR > F/S > DR. Fourth, The testament of resolution shows as follows F/S is 11~13 Lp/mm, CR is 4~5 Lp/mm, and DR is 5~7 Lp/mm(F/S > DR > CR) Fifth, The survey of projection, cassette, development and reading shows that user are indifference.

  • PDF

Quantitative Evaluation on Optimal Scan Time of PET/CT Studies Using TOF PET (TOF 기법을 이용한 PET/CT 검사에서 적정 스캔 시간에 대한 정량적 평가)

  • Moon, Il-Sang;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.34-37
    • /
    • 2012
  • Purpose: To verify the optimal scan time per bed for clinical application, we evaluated the quality of $^{18}F$-FDG images with varying scan times in a phantom and 20 patients with 38 lesions using a Philips (TOF) PET/CT scanner. Materials and Methods: The PET/CT images of a NEMA IEC body phantom and 20 patients (16 males, 4 females) were acquired for 5 different scan times of 20-100 sec per bed with intervals of 20 sec. The activity ratio of hot spheres (diameter of 17 [H1], 22 [H2] and 28 [H3] mm) to the background region in the IEC body phantom was 8-to-1. The contrast recovery coefficient (CRC) and standard uptake value (SUV) based on ROIs of hot spheres and background region were calculated. The noise in each background region was estimated as the ratio of SD of counts to the mean counts in the background region. On the patient image, the injected dose of $^{18}F$-FDG was $444{\pm}74$ MBq and the SUVs in the 38 hot lesions were measured. Results: The two scan time groups (LT-60 [<60 sec] and GT-60 [${\geq}60$ sec]) were compared. In the phantom study, the coefficient of deviations (CVs, %) of CRC and SUV in LT-60 (H1: 14.2 and 7.3, H2: 11.4 and 7.8, H3: 4.9 and 3.2) were higher than GT-60 (H1: 8.9 and 2.8, H1: 8.2 and 5.0, H3: 2.0 and 1.6). In the patient study, the mean CV of CRC and SUV in LT-60 (4.0) was higher than GT-60 (1.2). Conclusion: This study showed that noise increased as the scan time decreased. High noise for the scan time <60 sec per bed yielded high variation of SUV and CRC. Therefore, considering PET/CT image quality, the scan time per bed in the TOF PET/CT scanner should be at least ${\geq}60$ sec.

  • PDF

Phantom Study of the Mutual Influences Between 18F-FDG and 99mTcO4- on the Same Day (18F-FDG와 99mTcO4-를 이용한 당일 검사 시 상호 영향에 대한 Phantom 연구)

  • Ham, Jun Cheol;Park, Min Soo;Bahn, Young Kag;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.68-72
    • /
    • 2014
  • Purpose The nuclear medicine examination, there is a difficulty to carry out the inspection of both on the day of residual isotope due to the half-life. In this study, by studying the mutual influence and $^{18}F$-FDG of $^{99m}TcO_4{^-}$, I would like to explain the matters to be considered in the case of performing the same day. Materials and Methods With the NEMA-1994 Phantom, and experiments were performed 3 times. Create a 1: 4 Background ratio HOT and the $^{99m}TcO_4{^-}$ The first experiment: After underwent SPECT in INFINIA (GE Healthcare, MI, USA), and were injected with $^{18}F$-FDG 37 MBq in the Background area, 13 once for 60 minutes under the same conditions was time Scan. Create a 1: 4 Background ratio HOT and the $^{18}F$-FDG second is: The Scan in PET/CT Discovery 600 (GE Healthcare, MI, USA), and 148 MBq after injection $^{99m}TcO_4{^-}$ the Background area, once for 60 minutes, 6 under the same conditions was time Scan. Create a 1: 4 Background ratio HOT and the $^{18}F$-FDG experiments las, increments of 296 MBq and 148 MBq the 1 Bed Scan after $^{99m}TcO_4{^-}$, was 1 Bed Scan under the same conditions. Non BKG area and HOT, I was measured comparing the Total Counts and SNR or CNR. Results Showed a significant difference in the ratio CNR of enforcement during SPECT $^{18}F$-FDG is, (p>0.05). The $^{99m}TcO_4{^-}$ was no significant difference between the SNR ratio of PET / CT at the time of the effective date (p<0.05). I got the results $^{99m}TcO_4{^-}$ that reduce the Total Counts of PET / CT scan. Conclusion If you make a PET / CT scan, may affect the test using the $^{99m}TcO_4{^-}$ up to 12 hours, when it is performed before the $^{99m}TcO_4{^-}$, does not affect the SNR and SUV, PET / CT scan I reduced the detection efficiency. The inspection of day, we'd like to recommend a way to complement the detection efficiency to increase the inspection time of PET / CT in move forward the inspection using the $^{99m}TcO_4{^-}$.

  • PDF

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji, Young-Moo;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jung-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

The Difference of Standardized Uptake Value on PET-CT According to Change of CT Parameters (PET-CT에서 CT의 관전압 및 관전류에 따른 SUV값의 변화)

  • Shin, Gyoo-Seul;Dong, Kyeong-Rae
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2007
  • Purpose : There is difference between PET and PET/CT method on their transmission image for attenuation correction. The CT image is used for attenuation correction on PET/CT and the parameters of CT may be affected on PET image. We performed the phantom study to evaluate whether the change of CT parameters(kilovolts peak and milliampere) affect standardized uptake value(SUV) on PET image. Material and Method: The data spectrum lung phantom containing diluted [18F]fluorodeoxyglucose ([18F]FDG) solution(1.909 mCi for phantom 1, $913\;{\mu}Ci$ for phantom 2) was used. The CT images of phantom were acquired with varying parameters (80, 100, 120, 140 for kVp, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for mA). The PET images were reconstructed with the each CT images and SUVs were compared. Result : The SUVs of phantom 1 reconstructed with each 80, 100, 120 and 140 kVp showed $12.26{\pm}0.009$, $12.27{\pm}0.005$, $12.27{\pm}0.006$ and $12.27{\pm}0.009$, respectively. The SUVs of phantom 2 revealed $4.52{\pm}0.043$, $4.53{\pm}0.004$, $4.52{\pm}0.007$ and $4.52{\pm}0.005$ with elevation of voltage. There was no statistically significant difference of SUVs between groups based on various kVp. Also SUVs of phantom 1 and 2 showed no significant change with elevation of milliampere in CT parameter. Conclusion : The parameters of CT did not significantly affect SUV on PET image in our study. Therefore we can apply various parameters of CT appropriated for clinical conditions without significant change of SUV on PET CT image.

  • PDF

Measurement and Analysis of X-ray Absorbed Dose in Water Phantom using TLD (TLD를 이용한 X-선 수중 흡수선량 측정 및 해석)

  • Oh, Jang-Jin;Jun, Jae-Shik;Hah, Suck-Ho;Kim, Wuon-Shik;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.21-28
    • /
    • 1988
  • Absorbed dose in water was analyzed by Burlin's general cavity theory for medium X-ray energy region (HVL : 0.29, 0.84, 1.60, 2.62mm Cu) using LiF : PTFE TL dosimeter(0.4 mm ${\times}\;{\phi}$ 12.5mm, hot-pressed LiF TLD-700) which was enclosed in lucite capsule. The absorbed dose rate at 5cm depth in water phantom was determined with measurement error of ${\pm}5%$. This result was compared to that of the ionization method, indirectly absolute measurement method, of which measurement error of ${\pm}2%$. The difference between these two results lies within measurement error of LiF : PTFE method. Therefore, the absorbed dose in water obtained by LiF: PTFE is reliable, and this result suggests the base to estimate dose-equivalent for medium X-rays.

  • PDF

Commercially Available High-Speed Cameras Connected with a Laryngoscope for Capturing the Laryngeal Images (상용화 된 고속카메라와 후두내시경을 이용한 성대촬영 방법의 소개)

  • Nam, Do-Hyun;Choi, Hong-Shik
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.21 no.2
    • /
    • pp.133-138
    • /
    • 2010
  • Background and Objectives : High-speed imaging can be useful in studies of linguistic and artistic singing styles, and laryngeal examination of patients with voice disorders, particularly in irregular vocal fold vibrations. In this study, we introduce new laryngeal imaging systems which are commercially available high speed cameras connected with a laryngoscope. Materials and Method : The laryngeal images were captured from three different types of cameras. First, the adapter was made to connect with laryngoscope and Casio EX-F1 to capture the images using $2{\times}150$ Watt Halogen light source (EndoSTROB) at speeds of 1,200 tps (frame per second)($336{\times}96$). Second, Phantom Miro ex4 was used to capture the digital laryngeal images using Xenon Nova light source 175 Watt (STORZ) at speeds of 1,920 fps ($512{\times}384$). Finally, laryngeal images were captured using MotionXtra N-4 with 250 Watt halogen lamp (Olympus CLH-250) light source at speeds of 2,000tps ($384{\times}400$) by connecting with laryngoscope. All images were transformed into the Kymograph using KIPS (Kay's image processing Software) of Kay Pentex Inc. Results: Casio EX-F1 was too small to adjust the focus and screen size was diminished once the images were captured despite of high resolution images. High quality of color images could be obtained with Phantom Miro ex4 whereas good black and white images from Motion Xtra N-4 Despite of some limitations of illumination problems, limited recording time capacity, and time consuming procedures in Phantom Miro ex4 and Motion Xtra N-4, those portable devices provided high resolution images. Conclusion : All those high speed cameras could capture the laryngeal images by connecting with laryngoscope. High resolution images were able to be captured at the fixed position under the good lightness. Accordingly, these techniques could be applicable to observe the vocal fold vibration properties in the clinical practice.

  • PDF

DEVELOPMENT AND EVALUATION OF A PHANTOM FOR MULTI-PURPOSE DOSIMETRY IN INTENSITY-MODULATED RADIATION THERAPY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • A LEGO-type multi-purpose dosimetry phantom was developed for intensity-modulated radiation therapy (IMRT), which requires various types of challenging dosimetry. Polystyrene, polyethylene, polytetrafluoroethylene (PTFE), and polyurethane foam (PU-F) were selected to represent muscle, fat, bone, and lung tissue, respectively, after considering the relevant mass densities, elemental compositions, effective atomic numbers, and photon interaction coefficients. The phantom, which is composed of numerous small pieces that are similar to LEGO blocks, provides dose and dose distribution measurements in homogeneous and heterogeneous media. The phantom includes dosimeter holders for several types of dosimeters that are frequently used in IMRT dosimetry. An ion chamber and a diode detector were used to test dosimetry in heterogeneous media under radiation fields of various sizes. The data that were measured using these dosimeters were in disagreement when the field sizes were smaller than $1.5{\times}1.5\;cm^2$ for polystyrene and PTFE, or smaller than $3{\times}3\;cm^2$ for an air cavity. The discrepancy was as large as 41% for the air cavity when the field size was $0.7{\times}0.7\;cm^2$, highlighting one of the challenges of IMRT small field dosimetry. The LEGO-type phantom is also very useful for two-dimensional dosimetry analysis, which elucidates the electronic dis-equilibrium phenomena on or near the heterogeneity boundaries.