• 제목/요약/키워드: Petrov-Galerkin

검색결과 57건 처리시간 0.03초

Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method

  • Edalati, H.;Soltani, B.
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.235-245
    • /
    • 2018
  • In this study the stress analysis of orthotropic thin plate with arbitrary shapes for different boundary conditionsis investigated. Meshfreemethod is applied to static analysis of thin plates with various geometries based on the Kirchhoff classical plate theory. According to the meshfree method the domain of the plates are expressed through a set of nodes without using mesh. In this method, a set of nodes are defined in a standard rectangular domain, then via a third order map, these nodes are transferred to the main domain of the original geometry; therefore the analysis of the plates can be done. Herein, Meshless local Petrov-Galerkin (MLPG) as a meshfree numerical method is utilized. The MLS function in MLPG does not satisfy essential boundary conditions using Delta Kronecker. In the MLPG method, direct interpolation of the boundary conditions can be applied due to constructing node by node of the system equations. The detailed parametric study is conducted, focusing on the arbitrary geometries of the thin plates. Results show that the meshfree method provides better accuracy rather than finite element method. Also, it is found that trend of the figures have good agreement with relevant published papers.

하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발 (Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow)

  • 한건연;백창현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

개수로내의 점변 및 급변 부정류에 대한 유한요소해석 : II. 적용예 (Finite Element Analysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel : II. Applications)

  • 한건연;박재홍;이을래
    • 한국수자원학회논문집
    • /
    • 제30권1호
    • /
    • pp.35-44
    • /
    • 1997
  • Dynamic wavetlr의 Petrov-Galerkin 방법에 의한 유한요소모형을 점변 및 급변 부정류의 경우에 적용하였다. 정상도수, 마찰없는 수평수로상에서의 비선형 표면동요의 전달 및 댐 파괴 등의 급변 부정류의 경우에서 그 해석결과는 기존방법에 비해 우수하게 나타났고 해석적인 해와도 잘 일치되고 있었다. 본 연구모형은 마찰없는 수평수로상의 surge의 전파에 대하여 적용하여 급격한 선단부를 해석적인 해의 경우와 같이 재현할 수 있어 그 적용성을 입증하였다. 점변 부정류의 경우에는 태화강 하류부에 대해서 적용되었는데 그 계산결과는 수위, 유량의 수문곡선과 그 종단형상에 있어 기존의 DWOPER모형과 대등한 계산결과로 나타나 본 연구의 활용성을 입증하였다.

  • PDF

NUMERICAL MODELING OF TWO-DIMENSIONAL ADVECTION-DISPERSION IN OPEN CHANNEL

  • Lee, Myung-Eun;Kim, Young-Han;Seo, Il-Won
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.45-58
    • /
    • 2003
  • Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model using SUPG(Streamline upwind Petrov-Galerkin) method.

  • PDF

Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamadreza;Nezhad, Seyed Mojtaba Mosavi
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.679-698
    • /
    • 2020
  • In this paper, the meshless local Petrov-Galerkin (MLPG) method is developed for dynamic analysis of non-symmetric nanocomposite cylindrical shell equations of elastic wave motion with nonlinear grading patterns under shock loading. The mechanical properties of the nanocomposite cylinder are obtained based on a micro-mechanical model. In this study, four kinds of grading patterns are assumed for carbon nanotube mechanical properties. The displacements can be approximated using shape function so, the multiquadrics (MQ) Radial Basis Functions (RBF) are used as the shape function. In order to discretize the derived equations in time domains, the Newmark time approximation scheme with suitable time step is used. To demonstrate the accuracy of the present method for dynamic analysis, at the first a problem verifies with analytical solution and then the present method compares with the finite element method (FEM), finally, the present method verifies by using the element free Galerkin (EFG) method. The comparison shows the high capacity and accuracy of the present method in the dynamic analysis of cylindrical shells. The capability of the present method to dynamic analysis of non-symmetric nanocomposite cylindrical shell is demonstrated by dynamic analysis of the cylinder with different kinds of grading patterns and angle of nanocomposite reinforcements. The present method shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric nanocomposite cylindrical shell, which it furnishes a ground for a more flexible design.

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

수심평균 혼합거리 난류 모형의 개발 및 와점성계수의 평가 (Development of Depth-averaged Mixing Length Turbulence Model and Assessment of Eddy Viscosity)

  • 최승용;한건연;황재홍
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.395-409
    • /
    • 2011
  • 본 연구의 목적은 개수로에서 난류모의를 위한 2차원 모형을 개발하는데 있다. 연구모델은 Streamline Upwind / Petrov-Galerkin 유한요소법과 Boussinesq의 와점성이론을 기초로 하였는데, 수심적분을 취한 혼합거리 모형과 난류의 이방성과 국부평형의 조건을 적용하였다. 모형의 보정과 검증을 위해서 해석해와 관측자료를 활용하였다. 몇 가지 수치모의를 수행함으로써 난류모형의 민감도와 계산수행 능력을 확인할 수 있었다. 본 연구모형은 자연하천에서의 모형 적용성 확인을 위해서 한강유역에 적용하였고 모의치는 실측자료와 비교하였다. 개발된 모형은 자연하천에서의 관측자료와 비교적 잘 일치하는 것으로 나타났다. 결론적으로 본 연구의 2차원 유한요소모형은 개수로에서의 난류모의에 기초한 흐름분포에 있어 신뢰할만한 결과를 제공하는 것으로 나타났다.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

신뢰도 해석기법을 이용한 2차원 수질관리모형의 개발 (Development of 2-D Water Quality Management Model by Using Reliability Analysis)

  • 김상호;한건연;김원;최흥식
    • 한국수자원학회논문집
    • /
    • 제35권5호
    • /
    • pp.463-474
    • /
    • 2002
  • 하천에서 동수역학적 흐름해석 및 오염물질의 이송-확산 해석을 수행하고, 불확실도 해석기법을 이용하여 신뢰도 해석을 수행할 수 있는 2차원 수질관리모형인 UUWQM(Unsteady/Uncertainty Water Quality Model) 모형을 개발하였다. 본 모형의 실제 적용을 위해 낙동강 중류부의 성주에서 현풍까지 35km 구간에 대하여 2차원 동역학적 흐름해석과 수질해석이 실시되었다. 민감도 분석을 통해 수질모형에 기여도가 큰 입력변수들을 결정하였고 Monte Carlo 기법을 통하여 검증을 실시하였다. 대상구간의 주요지점에 대해 MFOSM 기법과 Monte Carlo 기법을 적용하여 수질농도의 빈도분포도를 제시하였으며, 목표 수질농도에 대한 초과확률을 산정하여 신뢰도 해석을 수행할 수 있는 수질관리시스템을 구축하였다.

유한요소법을 이용한 만곡수로에서의 2차원 하상변동 수치모형 (2D Finite Element Modeling of Bed Elevation Change in a Curved Channel)

  • 김태범;최성욱;민경덕
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.414-418
    • /
    • 2005
  • A finite element model is developed for the numerical simulation of bed elevation change in a curved channel. The SU/PG (Streamline-Upwind/Petrov-Galerkin) method is used to solve 2D shallow water equations and the BG (Bubnov-Galerkin) method is used for the Exner equation. For the time derivative terms, the Crank-Nicolson scheme is used. The developed model is a decoupled model in a sense that the bed elevation does not change simultaneously with the flow during the computational time step. The total load formula with is used for the sediment transport model. The slip conditions are described along the lateral boundaries. The effects of gravity force due to geometry change and the secondary flows in a curved channel are considered in the model. For the verification, the model is applied to two laboratory experiments. The first is $140^{\circ}$ bended channel data at Delft Hydraulics Laboratory and the second is $140^{\circ}$ bended channel data at Laboratory of Fluid Mechanics of the Delft University of Technology. The finite element grid is constructed with linear quadrilateral elements. It is found that the computed results are in good agreement with measured data, showing a point bar at the inner bank and a pool at the outer bank.

  • PDF