• 제목/요약/키워드: Petroleum Oil

검색결과 667건 처리시간 0.029초

인도네시아산 자원 내에 포함된 역청성 오일의 경질화를 위한 열분해 특성에 관한 연구 (Study on Pyrolysis Characteristics for Upgrading of Bitumen-Like Heavy Oil Contained in Indonesian Resources)

  • 장정희;한기보;박천규;전철환;김재곤;곽현
    • 청정기술
    • /
    • 제22권4호
    • /
    • pp.292-298
    • /
    • 2016
  • 본 연구에서는 인도네시아 현지로부터 수급된 지층 자원에 포함된 역청성 오일의 경질화를 위하여 열분해 공정이 적용되었다. 이러한 자원 내에 포함된 역청성 오일에 대한 조성 및 기초성상을 조사하기 위하여 공업분석, 원소분석 등이 수행되었으며, 열중량분석을 통해 역청성 오일의 전환에 대한 열분해반응 기초특성이 조사되었다. 이러한 결과를 바탕으로 원료 내에 포함된 역청성 오일을 경질화하기 위하여 필요한 열분해 온도 등의 운전조건 범위가 선정되었으며, 실험실 규모의 고정층 반응기를 이용하여 반응온도에 따른 역청성 오일의 전환율 및 열분해 오일의 회수율을 확인하였다. $550^{\circ}C$에서 수행된 열분해 공정에서 원료 내 포함된 역청성 오일의 전환율은 약 21%였으며, 경질화된 열분해 오일의 회수율은 약 80%였다.

석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성 (Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials)

  • 김대섭;임채훈;김석진;이영석
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.496-501
    • /
    • 2022
  • 본 연구에서는 석유 정제 부산물인 석유계 잔사유를 이용하여 리튬이차전지용 음극재를 제조하였다. 석유계 잔사유 중 열분해 연료유(pyrolysis fuel oil, PFO), 유동접촉분해 데칸트 오일(fluidized catalyst cracking-decant oil, FCC-DO), 감압잔사유(vacuum residue, VR)를 탄소 전구체로 사용하였다. MALDI-TOF, 원소분석(EA)을 통하여 석유계 잔사유의 물리화학적 특징을 확인하였고, 잔사유로부터 제조된 음극재는 XRD, Raman 등의 분석을 통해 그 구조적 특징을 평가하였다. VR은 PFO 및 FCC-DO에 비하여 광범위한 분자량 분포와 많은 양의 불순물을 함유하는 것을 확인할 수 있었고, PFO와 FCC-DO는 거의 유사한 물리화학적 특징을 나타내었다. XRD 분석결과로부터 탄화된 PFO와 FCC-DO는 유사한 d002값을 나타내었다. 그러나 Lc 및 La값에서는 FCC-DO가 PFO보다 더 발달된 층상구조를 갖는 것으로 확인되었다. 또한, 전기화학적 특성 평가에서는 FCC-DO가 가장 우수한 사이클 특성을 나타내었다. 이러한 석유계 잔사유의 물리화학적, 전기화학적 결과로 미루어 보아 FCC-DO가 PFO와 VR보다 더 우수한 리튬이차전지용 탄소 전구체인 것으로 사료된다.

국내 석유제품가격의 변동에 대한 소비자의 인식과 비대칭 분석 비교

  • 오선아;허은녕
    • 자원ㆍ환경경제연구
    • /
    • 제21권1호
    • /
    • pp.69-92
    • /
    • 2012
  • 석유제품의 소비자는 국제 원유가격의 변동을 기준으로 국내 석유제품가격을 예측하기 때문에 국제 원유가격이 하락하였음에도 국내 석유제품가격이 인하되지 않는 경우 의문을 제기한다. 반면 국내 석유제품가격의 비대칭성에 대한 기존 연구들은 다양한 기간과 자료를 통해 국내 석유제품가격의 비대칭성을 분석하였으나 소비자가 느끼는 비대칭성의 의문을 해결하지는 못하였다. 이에 본 연구에서는 다음과 같이 세 단계의 비대칭 분석을 실시하였다. 첫째로, 소비자가 느끼는 비대칭성을 확인하기 위해 국제 원유가격 변동에 따른 소비자가격의 비대칭성을 분석하였으며, 분석 결과 소비자가 느끼는 비대칭성을 확인하였다. 둘째로, 국제 원유가격과 실제 국내 석유제품가격의 결정 기준을 비교하기 위해 국제 원유가격과 환율을 고려한 국제 석유제품가격의 비대칭성을 분석하였으며, 분석 결과 국제 원유가격이 상승할 때 국제 석유제품가격은 더 큰 폭으로 상승하는 것으로 나타났다. 즉, 소비자가 느끼는 비대칭성의 상당부분은 가격결정 기준이 다름에서 기인한 것이다. 셋째로, 가격을 결정하는 주체별 비대칭성을 비교하기 위해 국제 석유제품가격 변동에 따른 정유사가격, 대리점 및 주유소의 가격 및 세금 등의 단계별 가격의 비대칭 분석을 실시하였으며, 분석 결과 모든 유종에 있어서 정유사가격은 환율을 고려한 국제 석유제품가격에 다소 늦게 인하하나 양적으로는 대칭적으로 조정되며 대리점 및 주유소 단계는 오히려 국제 석유제품가격의 상승을 덜 반영하는 것으로 나타났다. 반면 휘발유와 경유의 세금 변동은 시간적 비대칭과 양적 비대칭의 효과와 동일하게 추정되었다.

  • PDF

기름 유출로 인한 토양 및 지하수의 오염

  • 김동진;양재의;유진열;김희갑;김기동
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.424-427
    • /
    • 2006
  • Soil contamination with petroleum oil around a military army was investigated. It showed that soils of a riverside highland, an entrance of the military army, and nearby roads were contaminated with total petroleum hydrocarbons (TPH) released from the military army to the depth of approximately 2 m. The measured concentrations were as high as 15,277 mg/kg. A wide range of soil in the riverside highland was contaminated by the movement of oil to the surface soil, which occurred with the vertical movement of groundwater table caused by the change of river water level and groundwater level. Spilled petroleum oil components were released into Wonju Stream by the increase of hydraulic conductivity and the groundwater flow.

  • PDF

An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation

  • Sun, Jie;Jing, Jiaqiang;Brauner, Neima;Han, Li;Ullmann, Amos
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.99-108
    • /
    • 2018
  • An oil-tolerant and salt-resistant aqueous foam system was screened out as a possible lubricant to enable cold heavy oil transportation. The microstructures and viscoelasticity and effects of heavy oil, salt and temperature on the foam stability were investigated and new rheological and drainage models were established. The results indicate the foam with multilayered shells belongs to a special microcellular foam. The viscoelasticity could be neglected due to its low relaxation time. The drainage process can be divided into three stages. The foam with quality of 67.9% maintains great stability at high oil and salt concentrations and appropriate elevated temperature.

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • 제2권2호
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.

Stress field interference of hydraulic fractures in layered formation

  • Zhu, Haiyan;Zhang, Xudong;Guo, Jianchun;Xu, Yaqin;Chen, Li;Yuan, Shuhang;Wang, Yonghui;Huang, Jingya
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.645-667
    • /
    • 2015
  • Single treatment and staged treatments in vertical wells are widely applied in sandstone and mudstone thin interbedded (SMTI) reservoir to stimulate the reservoir. The keys and difficulties of stimulating this category of formations are to avoid hydraulic fracture propagating through the interface between shale and sand as well as control the fracture height. In this paper, the cohesive zone method was utilized to build the 3-dimensional fracture dynamic propagation model in shale and sand interbedded formation based on the cohesive damage element. Staged treatments and single treatment were simulated by single fracture propagation model and double fractures propagation model respectively. Study on the changes of fracture vicinity stress field during propagation is to compare and analyze the parameters which influence the interfacial induced stresses between two different fracturing methods. As a result, we can prejudge how difficult it is that the fracture propagates along its height direction. The induced stress increases as the pumping rate increasing and it changes as a parabolic function of the fluid viscosity. The optimized pump rate is $4.8m^3/min$ and fluid viscosity is $0.1Pa{\cdot}s$ to avoid the over extending of hydraulic fracture in height direction. The simulation outcomes were applied in the field to optimize the treatment parameters and the staged treatments was suggested to get a better production than single treatment.

대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구 (A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine)

  • 이민호;김정환;송호영;김기호;하종한
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.

Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능 (Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF

전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석 (Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector)

  • 김재곤;민영제;김목연;곽병섭;박현주
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.