• Title/Summary/Keyword: Perturbation method

Search Result 918, Processing Time 0.026 seconds

Spacecraft Intercept on Non-coplanar Elliptical Orbit Considering J2 Perturbation (J2 섭동을 고려한 비공면 타원 궤도에서의 우주비행체 요격)

  • Oghim, Snyoll;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.902-910
    • /
    • 2018
  • This paper deals with spacecraft intercept problem on non-coplanar elliptical obit considering J2 perturbation. This disturbance addressed in this work is a major factor changing the trajectory of a spacecraft orbiting the Earth. To resolve this issue, a real-time intercept method is proposed. This method is based on the optimization problem which consist of the equation of motion considering spherical earth and impulse, and the optimal solution numerically obtained is set as the direction of the thrust of the interceptor. The position error is resolved by iteratively solving the optimization problem and modifying the direction of thrust of interceptor. The proposed method in this paper is verified by using various numerical examples.

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.

Adaptive Control of CNC Boring Machine by Application of the Variance Perturbation Method (분산 섭동법 에 의한 CNC보오링 머시인 의 적응제어)

  • 이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 1984
  • A recursive parameter estimation method is applied to spindle deflection model during boring process. The spindle infeed rate is then determined to preserve the diametral tolerance of bore. This estimation method is further extended to adaptive control by application of the variance perturbation method. The results of computer simulation attest that the proposed method renders the optimal cutting conditions, maintaining the diametral accuracy of bore, regardless of parameter fluctuations. The proposed method necessitating only post-process measurements features that initialization of parameter guess values in simple, a priori knowledge on parameter variations is not needed and the accurate estimation of optimal spindle infeed rate is obtained, even if the parameter estimation may be poor.

Inverse Design Method of Supersonic wings Using Intergral Equations (적분방정식을 이용한 초음속 날개의 역설계법)

  • Jeong, Sin Gyu;Kim, Gyeong Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A practical design method for supersonic wings has been developed. The method is based on Takanashi's method that uses integral equations and iterative "residual-correction" concept. The geometry correction is calculated by solving linearized small perturbation equation (LSP) with the difference between garget and objective surface pressure distributions as a boundary condition. In the present method, LSP equation is analytically transformed to integral equations by using the Green's theorem. Design results of an isolated wing and wing-nacelle configurations are presented here.

Stochastic finite element method homogenization of heat conduction problem in fiber composites

  • Kaminski, Marcin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2001
  • The main idea behind the paper is to present two alternative methods of homogenization of the heat conduction problem in composite materials, where the heat conductivity coefficients are assumed to be random variables. These two methods are the Monte-Carlo simulation (MCS) technique and the second order perturbation second probabilistic moment method, with its computational implementation known as the Stochastic Finite Element Method (SFEM). From the mathematical point of view, the deterministic homogenization method, being extended to probabilistic spaces, is based on the effective modules approach. Numerical results obtained in the paper allow to compare MCS against the SFEM and, on the other hand, to verify the sensitivity of effective heat conductivity probabilistic moments to the reinforcement ratio. These computational studies are provided in the range of up to fourth order probabilistic moments of effective conductivity coefficient and compared with probabilistic characteristics of the Voigt-Reuss bounds.

The Design of Broadband PIFA for Hand-Held Mobile Phones (이동통신 광대역 PIFA 안테나 설계 및 해석)

  • 김상준;이대헌;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.855-862
    • /
    • 2003
  • This paper suggests the PIFA structure modified antenna in which short-circuit plate is located between planar element and ground plane, in order to solve the problem of narrow band of existing internal antenna, PIFA. It is also suggested that internal antenna has the perturbation in the patch to broaden the frequency bandwidth. It is possible that the antenna is installed into the mobile telephone with a low profile condition(h=0.015 λ) to use internally, and acquired desired bandwidth(5.2 %) through double resonance structure, remodeling the PIFA that is already well-known as an internal antenna. This paper investigated how characteristic is affected by the feeding point(Yf, Zf), short strip plate(Zs), short strip width(Ws), perturbation width(w), length(d), short plate height(h), dielectric($\varepsilon$$\_$r/) to be slim type antenna. It is compared with existing PIFA bandwidth, and is suggested pattern as the H.E plane. It is simulated using the Microwave Studio of the CST Inc. based on FIM(Finite Integration Method) method and analyzed antenna characteristic following the variation each parameters. The result proved the practical use of PIFA antenna by comparing the measured and simulated data of the antenna.

A Diagnostic Method in Principal Factor Analysis

  • Kang-Mo Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • A method of detecting influential observations in principal factor analysis is suggested. it is based on a perturbation of the empirical distribution function and an adoption of the local influence method. An illustrative example is given.

  • PDF

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

Forced nonlinear vibration by means of two approximate analytical solutions

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.853-862
    • /
    • 2014
  • In this paper, two approximate analytical methods have been applied to forced nonlinear vibration problems to assess a high accurate analytical solution. Variational Iteration Method (VIM) and Perturbation Method (PM) are proposed and their applications are presented. The main objective of this paper is to introduce an alternative method, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Some patterns are illustrated and compared with numerical solutions to show their accuracy. The results show the proposed methods are very efficient and simple and also very accurate for solving nonlinear vibration equations.

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.