• Title/Summary/Keyword: Perturbation Estimation

Search Result 88, Processing Time 0.023 seconds

The estimation of the robustness bounds of the systems having structured perturbations

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.420-423
    • /
    • 1995
  • The stability of system is one of the important aspects and to judge system's stability is another complicated problem. Previously, new technique derived from relaxing Lyapunov conditions has been already introduced and in this paper, this proposed technique applies to the practical dynamic systems. This utility of numerical procedures prove the comparable improvements of the estimation of robustness for dynamic systems having structured (bounded) perturbations.

  • PDF

Local Influence in Quadratic Discriminant Analysis

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.43-52
    • /
    • 1999
  • The local influence method is adapted to quadratic discriminant analysis for the identification of influential observations affecting the estimation of probability density function probabilities and log odds. The method allows a simultaneous perturbation on all observations so that it can identify multiple influential observations. The proposed method is applied to a real data set and satisfactory result is obtained.

  • PDF

Estimation of Rider's Action Force from Measurement of Motion Platform Control Force in the 6 DOF Bicycle Simulator (6 자유도 자전거 시뮬레이터의 운동 장치 제어력을 이용한 운전자의 작용력 추정)

  • 신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.842-847
    • /
    • 2002
  • One of the challenging problems with bicycle simulators is to deal with the inherent unstable bicycle dynamics that is coupled with rider's motion. For the bicycle dynamics calculation and the real time simulation, it is necessary to identify the control inputs from the rider as well as the virtual environments. The six control forces of the Stewart platform-based motion system are used for estimation of the rider's action force, which is one of the important control inputs, but of which the direct measurement is impractical. For the effective estimation of the rider's action force, the dynamics model of the motion system is derived incorporated with both analytical and experimental methods and the sliding mode controller with perturbation estimation is developed.

  • PDF

A Study on Signal Estimation of Modified Beamformer Method using Perturbation Covariance Matrix (섭동공분산행렬을 이용한 수정 빔형성기 방법의 신호 추정에 대한 연구)

  • Lee, Kwan-Hyeong;Cho, Tae-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2017
  • Transmission signal in wireless environment receives a signal in which a source signal, interference, and noise are mixed. The goal of this study is to estimate the desired signal from the received signal. In this paper, we have studied a method correctly estimating a target in spatial by modified beamformer method. The modified bemaformer uses an adaptive array antenna and perturbation matrix to obtain the optimal weight, and estimate the desired signal by radiating the beam in spatial. We estimate a desired signal of the target by improving resolution with the modified beamformer method which does not have complicated calculation amount. Through simulation, we compare and analyze the modified beamformer method and the MUSIC method with good resolution. In result of simulation, we showed that modified beamformer method has better resolution of 10degree than classical beamformer method and showed similar performance as the MUSIC method. The resolution of this paper was estimated to be about 5 degrees.

An Extended Finite Impulse Response Filter for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 확장 유한 임펄스 응답 필터)

  • Han, Sekyung;Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • In this paper, a finite impulse response (FIR) filter is proposed for discrete-time nonlinear systems. The proposed filter is designed by combining the estimate of the perturbation state and nominal state. The perturbation state is estimated by adapting the optimal time-varying FIR filter for the linearized perturbation model and the nominal state is directly obtained from the nonlinear nominal trajectory model. Since the FIR structured estimators use the finite horizon information on the most recent time interval, the proposed extended FIR filter satisfies the bounded input/bounded output (BIBO) stability, which can't be obtained from infinite impulse response (IIR) estimators. Thus, it can be expected that the proposed extended FIR filter is more robust than IIR structured estimators such as an extended Kalman filter for the round-of errors and the uncertainties from unknown initial states and uncertain system model parameters. The simulation results show that the proposed filter has better performance than the extended Kalman filter (EKF) in both robustness and fast convergency.

Force and Position Control of a Two-Link Flexible Manipulator with Piezoelectric Actuators (압전 작동기를 갖는 2 링크 유연 매니퓰레이터의 힘 및 위치 제어)

  • 김형규;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.428-433
    • /
    • 1997
  • This paper presents a new control strategy for the position and force control of flexible manipulators. The governing equation of motion of a two-link flexible manipulator which features piezoceramic actuators bonded on each flexible beam is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller on the basis of the rigid-mode dynamics. In the controller formulation, the sliding mode controller with perturbation estimation(SMCPE) is adopted to determine appropriate control gains. The SMCPE is then incorporated with the fuzzy technique to mitigate inherent chattering problem while maintaining the stability of the system. A set of fuzzy parameters and control rules are obtained from a relation between estimated perturbation and actual perturbation. During the commanded motion, undesirable oscillation is actively suppressed by applying feedback control voltages to the piezoceramic actuators. These feedback voltages are also determined by the SMCPE. Consequently, accurate force and position control of a two-link flexible manipulator are achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

Estimation of the sea surface wind from surface reverberation signals

  • Na, Jung-Yul;Kim, Sang-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.45-49
    • /
    • 1996
  • From the reverberation signals received in the shallower water, the surface scattered signals are identified by using the multipath eigneray model that provides launch angles, grazing angles and transmission loss from the high frequency directional source to and from the rough surface. For small scale surface waves, the perturbation method is used to compute the backscattering strength for various grazing angles and wind speeds. A scheme to inversely estimate the wind speed, by which the observed surface reverberation levels are produced, has been tested. In result, for low grazing angles the perturbation method can be used to predict the backscattering stregth, thereby the surface wind can be indirectly estimated.

  • PDF

Perturbation in the Earth's Pole due to the Recent 31 Large Earthquakes of Magnitude over 8.0

  • Na, Sung-Ho;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.271-276
    • /
    • 2016
  • We present our estimate of pole shift caused by the recent 31 largest earthquakes of magnitude over 8.0. After reviewing theory of perturbation in the Earth's rotation, each co-seismic as well as post-seismic pole shifts by the earthquakes are acquired and illustrated. A total co-seismic excitation due to these earthquakes is ($x_1$, $x_2$)=(-3.35, 5.89) milliarcsec, which increased about twice the initial estimation when the post-seismic deformation is considered. The single largest co-seismic excitation by 2011 Japan earthquake was ($x_1$, $x_2$)=(-2.06, 2.36) milliarcsec, which corresponds to 9.7 cm pole shift on the surface of the Earth.

Fuel Consumption Estimation for Atmospheric Drag Using LEO Perturbation Analysis (섭동해석을 이용한 저궤도 위성의 대기저항 보정용 연료 소모량 예측)

  • Jung, Do-Hee;Song, Yong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 1999
  • In this work variations of orbital parameters are derived from the perturbation equations under Earth oblateness and atmospheric drag. A simple and effective scheme is proposed to compute the required delta v and fuel consumption to compensate for atmospheric drag. The scheme is applied to KOMPSAT example.

  • PDF