• 제목/요약/키워드: Perspective-n-Point Algorithm

검색결과 7건 처리시간 0.019초

스마트폰 영상정보를 활용한 쿼터니언 기반 후방교회법과 PnP 알고리즘의 외부표정요소 비교 분석 (Comparative Analysis of Exterior Orientation Parameters of Smartphone Images Using Quaternion-Based SPR and PnP Algorithms)

  • 김남훈;이지상;배준수;손홍규
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.465-472
    • /
    • 2019
  • 사진 촬영 당시의 외부표정요소 추정 방법에는 공선조건식 기반 후방교회법이 널리 사용되지만 초기값을 필요로 하고, 그 값에 민감하다는 단점이 있다. 본 연구에서는 초기값을 필요로 하지 않는 외부표정요소 알고리즘인 쿼터니언 기반 공간후방교회법과 PnP (Perspective-n-Point algorithm)을 소개하고 그 결과를 비교하였다. 두 결과를 비교하기 위하여 일반 스마트폰으로 취득한 영상을 사용하였고, 지상기준점 취득은 본 연구진이 보유하고 있는 하이브리드 MMS (Mobile Mapping System) 점군 자료를 이용하였다. 그 결과, 공선조건식 기반 SPR (Single Photo Resection)을 참값으로 할 때, 쿼터니언 기반 SPR이 PnP 알고리즘에 비해 자세각 추정 정확도가 높았다. 카메라 위치추정의 경우에는 두 알고리즘 모두 지상기준점과 비교했을 때 0.8m 내의 정확도를 보임을 확인하였다.

AR 게임을 위한 위치추정 정확도 향상 알고리즘 (Algorithm to Improve Accuracy of Location Estimation for AR Games)

  • 한서우;서덕영
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.32-40
    • /
    • 2019
  • 실내에서 위치를 추정하는 연구는 다양한 분야에서 필요하다. 실내에서 위치를 추정하는 방법은 하드웨어를 이용하는 방법과 하드웨어를 이용하지 않는 방법으로 나눌 수 있다. 하드웨어를 사용하는 방법은 정확도가 높지만, 하드웨어 설치비용이 든다는 단점이 있다. 반대로 하드웨어를 사용하지 않는 방법은 설치비용이 들지 않지만, 정확도가 떨어진다. AR 게임을 위한 위치추정에 제일 중요한 목표는 정확도를 높이는 것이다. 위치를 추정하기 위해서는 Perspective-N-Point (PnP)의 해를 얻어야 한다. PnP 문제의 해를 구하기 위해서는 위치를 추정하고 싶은 공간의 삼차원 좌표와 그 공간에서 찍은 영상이 필요하다. 삼차원 좌표와 매칭 되는 이차원 좌표 6쌍을 통해 위치를 추정할 수 있다. 해의 정확도를 높이기 위해 어떤 점들을 선택하면 정확도가 높아지는지 확인할 비공면도(non-coplanarity degree)를 추가로 사용할 것을 제안했다. 점 6개 이상인 상황에서 비공면도가 커질수록 위치추정 정확도가 높아질 확률이 높다. 제안한 방법의 장점은 모든 기존 위치추정 방법에 적용할 수 있다는 것과 하드웨어를 사용하여 위치를 추정하는 것보다 더 높은 정확도를 보인다.

CG와 동영상의 지적합성 (Intelligent Composition of CG and Dynamic Scene)

  • 박종일;정경훈;박경세;송재극
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1995년도 학술대회
    • /
    • pp.77-81
    • /
    • 1995
  • Video composition is to integrate multiple image materials into one scene. It considerably enhances the degree of freedom in producing various scenes. However, we need to adjust the viewing point sand the image planes of image planes of image materials for high quality video composition. In this paper, were propose an intelligent video composition technique concentrating on the composition of CG and real scene. We first model the camera system. The projection is assumed to be perspective and the camera motion is assumed to be 3D rotational and 3D translational. Then, we automatically extract camera parameters comprising the camera model from real scene by a dedicated algorithm. After that, CG scene is generated according to the camera parameters of the real scene. Finally the two are composed into one scene. Experimental results justify the validity of the proposed method.

Updating Smartphone's Exterior Orientation Parameters by Image-based Localization Method Using Geo-tagged Image Datasets and 3D Point Cloud as References

  • Wang, Ying Hsuan;Hong, Seunghwan;Bae, Junsu;Choi, Yoonjo;Sohn, Hong-Gyoo
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.331-341
    • /
    • 2019
  • With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.

곡선 궤적의 이동 관측점에 대한 다면체 모델의 윤곽선 추출 (Extracting Silhouettes of a Polyhedral Model from a Curved Viewpoint Trajectory)

  • 김구진;백낙훈
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제8권2호
    • /
    • pp.1-7
    • /
    • 2002
  • 컴퓨터 그래픽스 및 애니메이션에서 물체의 윤곽선 계산은 많은 응용분야에서 빈번히 사용되고 있으며, 윤곽선의 효율적인 계산 방법은 현재까지 많은 연구자들의 관심을 끌어왔다. 본 논문에서는 이동하는 관측점에 대해 다면체 모델의 투시 윤곽선을 계산하는 효율적인 알고리즘을 제시한다. 관측점이 시간에 따라 이동하는 경로는 시간을 나타내는 매개변수 t를 이용하여 곡선 q(t)로 표현한다. 다면체의 각 에지(edge)가 윤곽선에 포함되는 시간 간격 (time-interval)은 에지에 인접한 두 면의 supporting plane들과 q(t)의 교점 계산, 그리고 몇 차례의 벡터 내적을 수행함으로써 구해진다. 곡선 q(t)가 차수 n의 곡선이라면, 한 에지가 윤곽선에 포함되는 시간 간격은 최대 n + 1 개 존재할 수 있다. 미리 구해진 시간 간격들에 대해 고정된 시점 $t_i$를 포함하는 시간 간격들을 검색함으로써 관측점이 $q(t_i)$일 때 모델의 윤곽선에 포함되는 모든 에지를 구할 수 있다. 윤곽선 계산의 효율성은 시간 간격을 저장하는 자료구조 (data structure)와 밀접한 관련이 있으므로, 시간 간격을 저장하는 자료구조로서 인터벌 트리 (interval tree)의 사용을 제안한다. 또한, 제시된 알고리즘에 의해 윤곽선을 계산한 실험결과를 보인다.

  • PDF

종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 (A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings)

  • 구민정;안현철
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.85-109
    • /
    • 2018
  • 추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.