• 제목/요약/키워드: Personalized recommendation service

검색결과 153건 처리시간 0.024초

집단지성 기반 학습자료 북마킹 서비스 시스템 (Learning Material Bookmarking Service based on Collective Intelligence)

  • 장진철;정석환;이슬기;정치훈;윤완철;이문용
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.179-192
    • /
    • 2014
  • 최근 IT 환경의 변화에 따라 웹 서비스를 기반으로 대규모 사용자 대상의 상호 참여적인 MOOC(Massive Open Online Courses)과 같은 온라인 교육 환경이 부상하고 있다. 그러나 온라인 교육 시스템은 원거리로 학습이 이루어짐에 따라 학습자의 자발적 동기를 꾸준히 유지하기 어려우며, 또한 학습자 간에 지식을 공유하고 공유한 지식을 활용하는 기능이 부족하다. 이러한 문제를 극복하기 위해 구성주의적 학습이론과 집단지성에 기반하여 학습자가 보유한 학습자료를 공유하고 개인화된 학습자료 추천을 받을 수 있는 학습자료 북마킹 서비스인 WeStudy를 구현하였다. 위키피디아(Wikipedia), 슬라이드쉐어 (SlideShare), 비디오렉쳐스 (VideoLectures) 등 현존하는 집단지성 기반 서비스들의 주요 기능으로부터 필요한 집단지성 기능들을 검토하였으며, 본 서비스의 주요 기능으로 1) 리스트 및 그래프 형태의 학습자료 리스트 시각화, 2) 개인화된 학습자료 추천, 3) 보다 상세한 학습자료 추천을 위한 관심 학습자 지정 등을 도출하여 시스템을 설계하였다. 이후, 웹 기반으로 구현된 세 가지 주요기능 별로 개량된 휴리스틱 사용성 평가 방법을 통해 개발된 시스템의 사용성 평가를 실시하였다. 10명의 HCI 분야 전공자 및 현업 종사자를 대상으로 정량적 및 정성적인 평가 결과, 세 가지의 주요 기능에서 전반적으로 사용성이 우수한 것으로 판정되었다. 주요 기능 별 정성적인 평가에서 도출된 여러 마이너 이슈들을 반영할 필요가 있으며, 향후 대규모 사용자를 대상으로 본 서비스를 보급하고 이용할 수 있도록 제공하여 자발적인 지식 공유 환경을 조성할 수 있을 것으로 전망된다.

전자상거래에서의 벡터 공간 모델링을 통한 Configuration 시스템 (Configuration System through Vector Space Modeling In I-Commerce)

  • 김세형;조근식
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.149-159
    • /
    • 2001
  • 최근 전자상거래에는 일대일 마케팅이나 협력적 정보여과기법등을 이용한 다양한 추천서비스가 도입되고 있다. 이러한 추천 서비스의 형태는 다양한 제약 조건을 갖고 계산 복잡도가 높은 제품의 경우에는 고객을 만족시킬 만큼 적절한 추천서비스가 이루어지기 어려울 것으로 본다. 본 논문에서는 Clancey의 Classification Problem Solving 방법과 제약조건 기반 Configuration기술을 통합하여, 이러한 문제를 해결할 수 있는 방법을 제시하였다. 이 방법은 Clancey의 이론에 따라 구성 복잡도가 높은 제품의 해집합 도메인을 분할하여 문제의 복잡도를 줄일 수 있도록 하였으며, 여기에서 선택된 도메인을 제약조건 기반 Configuration기술에 적용시킴으로써, 구매자와 제품 컴포넌트 사이에 존재하는 제약조건을 처리할 수 있도록 하였다. 제약조건기반 Configuration기술은 구매자에게 적합한 제품을 구성하기 위해서 제막 조건 판촉 문제(Constraint Satisfaction Problem; CSP)해결 기법을 이용한다. 또한 Clancey이론은 구매자의 만족도를 고려하기 위해서 정보검색 분야의 벡터공간 모델링 방법을 변형하여 적용하였다. 마지막으로 본 모델의 평가를 위해 전체 시스템의 수행시간 및 구매자 만족도를 비교 분석하였다

  • PDF

모바일 사용자의 잠재 관심 추론을 위한 앙상블 기법 (An Ensemble Method for Latent Interest Reasoning of Mobile Users)

  • 최예림;박종헌;신동완
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권11호
    • /
    • pp.706-712
    • /
    • 2015
  • 최근 모바일 서비스에서 콘텐트를 요약 정보가 담긴 리스트 형태로 제공하는 경우가 증가하고 있다. 이에 따라 사용자가 콘텐트에 관심이 있어도 별점이나 클릭과 같은 명시적 혹은 암묵적 관심을 표현하지 않고 요약 정보를 통해 콘텐트를 소비하는 잠재 관심 표현이 대다수를 차지하게 되었다. 따라서 사용자의 관심을 파악하기 위해서는 잠재 관심 콘텐트의 추론이 필수적이다. 본 연구에서는 사용자의 모바일 상의 콘텐트 소비 로그 패턴을 분석하여 잠재 관심 콘텐트를 추론하는 기법을 제안한다. 특히, 실제 서비스에 적용 시 잘못된 관심 추론은 치명적일 수 있다는 점에서 추론의 정밀도를 극대화시키기 위해 서로 다른 특성을 반영한 다수의 분류기가 모두 동의한 경우에 잠재 관심 콘텐트로 추론하는 만장일치 앙상블 방식을 도입한다. 자체 제작한 어플리케이션으로부터 콘텐트 소비 로그를 수집하였으며 이를 이용하여 제안 방법론의 우수한 성능을 확인하였다. 이러한 잠재 관심 아이템의 정확한 도출은 사용자의 관심에 기초한 추천 시스템과 같은 개인화 서비스의 질 향상에 기여할 것이다.

머신러닝을 이용한 의료 및 광고 블로그 분류 (A Classification of Medical and Advertising Blogs Using Machine Learning)

  • 이기성;이종찬
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.730-737
    • /
    • 2018
  • 행복한 삶의 질을 목적으로 하는 의료소비자가 증가하면서 웹에 분산되어 있는 블로그의 의료 정보를 바탕으로 신뢰성 있는 의료 시설을 선택하고 고품질의 의료 서비스를 받음으로서, 시간과 비용을 절약할 수 있는 O2O 의료 마케팅 시장이 활성화 되고 있다. 인터넷, 모바일, SNS 등에서 증가하는 비정형 텍스트 데이터는 전문 의료 지식 이외에 작성자의 관심, 선호, 예상 등을 직간접적으로 반영하고 있기 때문에 의료정보의 신뢰성을 담보하기 어렵다. 본 연구에서는 빅데이터 및 MLP를 사용하여 의료정보 블로그를 분류 (의료블로그, 광고블로그)함으로서 사용자에게 보다 고품질의 의료정보 서비스를 제공하는 블로그 판단 시스템을 제안한다. 제안된 빅데이터 및 머신러닝 기술을 통해 인터넷상에 존재하는 국내의 다수 의료정보 블로그를 종합, 분석한 후 질환별 개인 맞춤형 건강정보 추천 시스템을 개발한다. 이를 통하여 사용자는 자신의 건강문제를 지속적으로 점검하고 가장 적절한 조치를 취함으로서 자신의 건강 상태를 유지하는 것이 가능할 것으로 기대된다.

패턴인식에 기반한 컴퓨팅사고력 계발을 위한 유치원 AI교재 설계 (Design of Artificial Intelligence Textbooks for Kindergarten to Develop Computational Thinking based on Pattern Recognition.)

  • 김소희;정영식
    • 정보교육학회논문지
    • /
    • 제25권6호
    • /
    • pp.927-934
    • /
    • 2021
  • 인공지능은 우리의 삶에 점차 많은 부분을 차지하고 있으며, 발전하는 속도도 빨라지고 있다. 학생들의 컴퓨팅 사고력을 인공지능이 학습하는 방법대로 길러주는 것을 ACT(AI based Computational Thinking)라고 한다. ACT 중 패턴 인식은 문제를 효율적으로 해결하기 위해 필수적인 요소이다. 패턴 분석은 패턴 인식 과정의 일부로 볼 수 있다. 실제로 넷플릭스의 개인 맞춤 영화 추천, 반복된 증상을 분석하여 코로나 바이러스로 명명하는 것 등이 모두 패턴 분석의 결과이다. 패턴인식을 포함한 ACT의 중요성이 부각되는 것에 반면, 유치원과 초등학교 저학년을 대상으로 한 소프트웨어 교육은 국외에 비해 많이 부족한 실정이다. 따라서 본 연구에서는 유치원 학생들을 대상으로 하여 패턴 분석을 통한 인공지능 기반 컴퓨팅 사고력 계발을 위한 교재를 설계하고 개발하였다.

사용자 선호도 자동 학습 방법을 이용한 개인용 전자 프로그램 가이드 어플리케이션 개발 (Personalized EPG Application using Automatic User Preference Learning Method)

  • 임정연;정현;강상길;김문철;강경옥
    • 방송공학회논문지
    • /
    • 제9권4호
    • /
    • pp.305-321
    • /
    • 2004
  • 디지털 방송의 시작과 함께, 지상파, 위성, 케이블과 같은 다양한 매체를 통한 다채널 방송 시청 환경의 도래는 사용자에게 많은 방송 프로그램 시청 정보를 전달하게 되었다. 이와 더불어, 방송 단말에 전송된 다양한 방송 프로그램 정보를 탐색하고 선호 방송 프로그램을 선별하기 위해서는 사용자에게 많은 노력이 요구된다. 따라서, 사용자로 하여금 자신의 취향 및 자신이 원하는 방송 프로그램 정보에 자동적으로 근접할 수 있도록 하는 개인화된 방송 서비스가 요구되고 있다. 이러한 요구에 따라, 본 논문에서는 다채널 방송 시청 환경 하에서 사용자의 방송 프로그램 시청 히스토리를 분석하고, 특정 시간에 따른 사용자의 방송 프로그램 시청 패턴윽 추출하여 방송 프로그램 장르에 대한 사용자 선호도를 자동으로 계산하는 알고리즘을 제안하고. MPEG-7 MDS 구조에 따른 사응자 선호토 서술과 이를 이용하여 사용자의 선호도에 따라 방송 프로그램을 자동적으로 추천하는 TV 프로그램 추천 어플리케이션을 소개한다. 본 논룬의 실헐을 위해 AC Nielsen Korea에서 제공된 실제 연령대별, 성별, 시간대별로 사용자의 TV 시청 자료를 사용하였으며, 실험결과를 통해 본 논문에 제안된 베이시안 네트워크 기반 사용자 자동 학습 알고리즘이 효과적으로 사용자 선호도를 학습한 수 있음을 확인하였다.

종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 (A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings)

  • 구민정;안현철
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.85-109
    • /
    • 2018
  • 추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

다문화 구성원을 위한 학습자원 메타데이터 응용표준 프로파일 (Application Profile for Multi-Cultural Content Based on KS X 7006 Metadata for Learning Resources)

  • 조용상;우지륭;노규성
    • 디지털융복합연구
    • /
    • 제15권4호
    • /
    • pp.91-105
    • /
    • 2017
  • 한국은 최근 급속도로 다문화 사회로 변모해 가고 있으며, 2015년 기준 다문화 가족수는 전체 인구의 3.5%, 80만명을 넘어서고 있다. 또한, 2016년 기준 국제결혼비율이 10%를 넘어서고 있어 다문화 가족수는 꾸준히 늘어날 전망이다. 이 연구는 한국 사회에 적응해야 하는 결혼이주여성들과 다문화 가족 구성원들의 필요와 선호에 맞춘 학습자원과 콘텐츠를 제공하기 위한 기반 조성의 일환으로 메타데이터 표준 프로파일을 설계한 것이다. 연구 추진 필요성을 검증하기 위해 소비자 집단을 선별하여 심층인터뷰를 가졌으며, 메타데이터 표준 프로파일 설계를 위해 공적 표준으로 채택된 관련 국제표준과 한국의 국가표준 시리즈를 분석하였다. 이어서 다문화 구성원을 위한 콘텐츠 특성을 분석하여 필요한 메타데이터 요소들을 선별하여 프로파일로 구성하였으며, 콘텐츠 제작자들의 요구를 반영하여 필수와 선택 조건들을 정의하였다. 본 연구는 결혼이주여성들의 교육 수요를 분석하여, 한-한 변환 시스템, 맞춤형 학습콘텐츠 추천 서비스, 학습관리시스템(Learning Management System) 등 효과적인 교육 콘텐츠를 개발하고 서비스하기 위해 필요한 메타데이터 표준안으로 기반을 조성했다는 점과 향후 교육과정의 주제별 서비스를 위해서도 자원이 노출될 수 있다는 점에서 의의가 있다.

U-마켓에서의 사용자 정보보호를 위한 매장 추천방법 (A Store Recommendation Procedure in Ubiquitous Market for User Privacy)

  • 김재경;채경희;구자철
    • Asia pacific journal of information systems
    • /
    • 제18권3호
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.