Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.251-254
/
2011
본 논문에서는 도서관 정보시스템에서 보다 개인화된 추천 서비스를 제공하기 위하여, 사용자 기반 협업 필터링의 희소성 문제를 해결하기 위한 방안을 제시한다. 이를 위하여 아이템을 메타데이터 속성인 주제분류번호를 이용하여 동일 주제의 자료끼리 군집화하고 주제군집에 대한 선호도 점수를 추출하여 이를 사용자 유사도 계산에 사용하였다. 실험을 위하여 실제 연세대학교 도서관에서 동양서를 대출한 35,238명의 총 659,792건 대출/반납건수 데이터를 사용하였으며, 제안된 방법의 성능을 평가하기 위하여 기존의 사용자 기반 협업 필터링과 비교한 결과, 정확도에서는 큰 차이가 없었으나 Coverage가 크게 향상되었음을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2017.01a
/
pp.105-108
/
2017
본 논문에서는 오픈마켓에서의 여행상품을 구입하기 전에 자신의 여행 기간을 입력하고 각 여행상품을 자신의 스케줄에 등록하여 개인에게 최적화된 여행 스케줄을 작성할 수 있는 시스템을 구현하였다. 그리고 개인화된 여행스케줄 생성을 위한 추천시스템은 설문형식의 사전 설정으로 개인이 선호하는 여행지를 선택하고 사용자와 유사한 성향을 지닌 기존 사용자들의 선호 콘텐츠를 추천하며, 여행상품 큐레이션 지원을 위해 현재 사용자의 상품페이지 방문패턴의 분석과 고객의 성향을 계량화한다.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.406-407
/
2016
최근 바쁜 일상 속에서 개인의 삶의 질과 활력을 높이기 위해 여가활동에 대한 관심이 증가하고 있고 그 중에서 독서는 꾸준한 사랑을 받고 있는 여가 활동이다. 그 중 소설의 출판량은 다른 타 장르에 비해 가히 압도적이다. 하지만 소설은 개인의 취향에 영향을 많이 받는다는 특징이 있어 사용자에게 적합한 소설을 추천하기란 기존의 시스템으로는 한계가 있다. 따라서 본 논문에서는 클라우드 컴퓨팅 시스템인 AWS(Amazon Web Service)를 이용하며 사용자의 개인 성향과 협업 필터링 방법을 이용하여 각각의 개인 성향에 적합한 소설을 추천하는 시스템을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.277-279
/
2000
인터넷 쇼핑몰의 급증으로 각 쇼핑몰은 경쟁적으로 표적판매의 전략으로써 상품 광고나 쇼핑 정보 등을 회원들에게 e-mail로 제공해 주고 있지만 여러 쇼핑몰에 회원으로 가입되어 있는 인터넷 사용자들에게 이런 무분별하고 획일적인 광고는 오히려 번거로운 것일 수 있으며 더욱이 그 내용이 관심 밖의 것일 경우 무가치한 정보 공해에 지나지 않게 된다. 본 논문에서는 등록된 사용자의 프로파일 정보와 학습된 쇼핑패턴을 토대로 그 사용자의 관심도와 쇼핑이 필요한 시기를 예측하여 e-mail로 개인화된 광고 및 추천서비스를 제공하는 비교 쇼핑 시스템을 제안한다. 이를 위해 상품별 구매속성이 반영된 코드를 상품의 ID로 정하여 구매속성별 분류와 검색 및 갱신이 쉽고 정확하게 이루어지도록 하였고 별도의 학습 과정 없이 코드의 검색만으로 선별된 상품을 자동으로 광고와 추천하는 것이 가능하다.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.446-449
/
2017
인터넷의 보급과 동시에 데이터의 누적으로 생성된 수많은 빅 데이터의 활용을 통해 수 없이 많은 개인에 대한 분석과 추천이 가능해졌다. 그중 영화는 현대인의 문화로 자리 잡으며 수많은 데이터의 누적이 이루어 졌으며 계속해서 누적되어가고 있다. 이런 누적된 데이터를 통해서 개인에게 맞는 영화를 추천하는 협업필터링 시스템을 R을 통해 분석하고 Cold Start 문제를 개인화 요인으로서 보안하여 보다 신뢰성 높은 추천 시스템을 제안 한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.591-592
/
2013
현재 사회는 건강에 대한 관심이 크게 증가하고 있으며, 전문적인 건강관리 서비스를 받기 위해서 사용자의 상태 및 상황을 정확히 알 수 있도록 사용자 행위인지 관련 연구가 활발히 진행되고 있다. 기존의 행위인지 연구에서 사용하는 각종 웨어러블 센서는 일상생활의 불편 및 비용 문제를 야기하여, 본 연구에서는 센서 디바이스로 스마트폰을 사용한다. 기존의 행위인지 연구는 특정 실험군 이외의 제3자에 의한 실험에서는 정확도에 큰 차이를 보이며, 인지 오류에 대한 실시간 수정이 불가능하였다. 본 논문에서는 프롬프트 방식을 통해 실시간으로 사용자의 인지 오류를 피드백하고, 클라우드 시스템에서 실시간으로 재트레이닝을 통한 수정된 행위 모델을 생성하여 지속적으로 행위의 오류를 줄이며, 각각의 사용자에 맞는 건강관련 서비스를 추천하는 방안을 제안하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.37-40
/
2020
날씨에 대한 인류의 관심은 인류 역사가 시작되면서 지금까지 예측하며 관심 영역인 만큼 인류에게 끼치는 영향이 크다. 초기 인류에게 있어서 의류는 생존을 위한 생존 도구에서 현재는 패션의 영역으로 자기를 표출하거나 자신에게 가장 어울리는 옷을 찾기 위한 욕구로 발전해 왔다. 따라서 본 논문에서는 날씨에 따른 개인의 체감온도와 해당 날씨에 가장 선호하는 의상을 분석하고, 예측하며 추천해주는 시스템을 제안한다. 제안하는 시스템은 지속적인 유지 관리를 통해 보완해 나간다면 날씨와 패션 분야에서 다양한 접목을 하는 등 기술발전을 할 것으로 기대된다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.209-210
/
2023
본 연구에서는 OTT 개인화 추천 서비스에서 5요인 성격이론을 적용하여 사용자들의 정보 프라이버시 염려에 관한 영향을 미치는 요인을 파악하고 프라이버시 염려와 개인정보 제공의도와의 관계에 관한 가설을 도출하였다. OTT 개인화 추천 서비스의 정보 프라이버시 염려에 영향을 미치는 요인으로 성격이론인 친화성, 정서적 불안정성, 성실성, 외향성, 경험에 대한 개방성 다섯 가지 요인을 도출하였으며, OTT 추천 서비스의 특성인 추천서비스의 정확성, 추천서비스의 다양성, 추천 서비스의 신기성 세 가지 요인을 도출하였다. 본 연구는 5요인 성격이론을 OTT 개인화 추천서비스 연구에 적용하였다는 데 의의가 있을 뿐만 아니라, OTT 기업들이 사용자의 정보 프라이버시 염려 행동을 이해하는 데에 도움을 줄 것으로 기대한다.
Proceedings of the Korea Information Processing Society Conference
/
2007.11a
/
pp.436-439
/
2007
추천 서비스는 사용자에게 적합한 서비스를 선응적으로 제공하는 기술로써, 전자상거래 환경을 중심으로 널리 이용되고 있다. 그러나, 유비쿼터스 환경에서도 가장 활발한 기술 접목이 이루어지는 홈 네트워크 환경 내에 추천 서비스가 적용된 사례는 많지 않다. 본 논문에서는 홈 네트워크 환경에서 누적된 사용자와 기기 간 상호작용 정보들을 바탕으로 사용자 위치 기반의 개인화된 서비스를 추천하는 알고리즘을 제안한다. 본 알고리즘에서는 밀도기반 초기값 선정 기법을 적용한 군집화를 통해 필요한 데이터만을 추출함으로써 서비스 추천의 효율성 및 정확성을 높인다. 또한, 사용자 기반의 협업 필터링을 이용하여 데이터가 충분히 많지 않은 상황에서도 정확한 서비스 추천을 수행한다.
So far, many researches have been done to retrieve music information using static classification descriptors such as genre and mood. Since static classification descriptors are based on diverse content-based musical features, they are effective in retrieving similar music in terms of such features. However, human emotion or mood transition triggered by music enables more effective and sophisticated query in music retrieval. So far, few works have been done to evaluate the effect of human mood transition by music. Using formal representation of such mood transitions, we can provide personalized service more effectively in the new applications such as music recommendation. In this paper, we first propose our Emotion State Transition Model (ESTM) for describing human mood transition by music and then describe a music classification and recommendation scheme based on the ESTM. In the experiment, diverse content-based features were extracted from music clips, dimensionally reduced by NMF (Non-negative Matrix Factorization, and classified by SVM (Support Vector Machine). In the performance analysis, we achieved average accuracy 67.54% and maximum accuracy 87.78%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.