• 제목/요약/키워드: Personalized recommendation service

검색결과 153건 처리시간 0.024초

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

콘텐츠 유형에 따라 OTT 서비스의 개인화추천서비스가 관계강화 및 고객충성도에 미치는 영향 (Influence A Study on the Effects of Personalized Recommendation Service of OTT Service on the Relationship Strength and Customer Loyalty in Accordance with Type of Contents)

  • 김민주;김민균
    • 서비스연구
    • /
    • 제8권4호
    • /
    • pp.31-51
    • /
    • 2018
  • 본 기술의 발전과 인터넷 환경의 변화로 인터넷 기반의 동영상 제공 서비스인 OTT(Over-the-top) 서비스 시장이 빠르게 성장하고 이용자의 데이터를 바탕으로 맞춤형 정보 및 콘텐츠를 제공하는 개인화추천서비스에 대한 고객의 요가 커졌다. 본 연구는 OTT 서비스의 개인화추천서비스가 관계강화와 고객충성도에 미치는 영향을 분석하며, 나아가 콘텐츠 유형에 따라 개인화추천서비스가 가지는 의미의 차이를 확인하여 개인화추천서비스의 제공 방안을 제시하는 것을 목적으로 한다. 연구결과에 따르면 OTT 서비스의 개인화추천서비스는 관계강화를 매개로 고객충성도에 유의한 영향을 미치며, 고객이 주로 이용하는 콘텐츠의 형태 및 내용에 따라 개인화추천서비스가 관계강화와 고객충성도에 미치는 영향에 차이가 있다. 본 연구를 통해 개인화추천서비스는 고객과의 관계 형성 및 몰입을 유도하여 관계를 강화하는 도구로 활용될 수 있고 이는 고객충성도를 향상하며, 고객과의 소통이 활발한 콘텐츠일수록 개인화추천서비스의 제공이 충성도 향상에 크게 기여함을 알 수 있다.

Personalized Recommendation System for Location Based Service

  • Lee Keumwoo;Kim Jinsuk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.276-279
    • /
    • 2004
  • The location-based service is one of the most powerful services in the mobile area. The location-based service provides information service for moving user's location information and information service using wire / wireless communication. In this paper, we propose a model for personalized recommendation system which includes location information and personalized recommendation system for location-based service. For this service system, we consider mobile clients that have a limited resource and low bandwidth. Because it is difficult to input the words at mobile device, we must deliberate it when we design the interface of system. We design and implement the personalized recommendation system for location-based services(advertisement, discount news, and event information) that support user's needs and location information. As a result, it can be used to design the other location-based service systems related to user's location information in mobile environment. In this case, we need to establish formal definition of moving objects and their temporal pattern.

  • PDF

지각된 넷플릭스 개인화 추천 서비스가 이용자 기대충족에 미치는 영향 (The Effects of Perceived Netflix Personalized Recommendation Service on Satisfying User Expectation)

  • 정승화
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.164-175
    • /
    • 2022
  • OTT(Over The Top) 플랫폼은 개인화된 추천 서비스가 이용자들을 플랫폼에 더 오래 머물게 하고, 더 자주 방문하게 한다는 점에서 차별적 경쟁우위 특성을 강화하기 위해 노력하고 있다. 본 연구에서는 개인화된 추천 서비스의 특성을 추천 정확성과 추천 다양성, 추천 신기성의 3가지로 구분하고, 각 특성이 이용자가 추천 서비스에 대해 인지하는 유용성에 영향을 미치고, 기대충족으로 이어지는 연구모형을 제안하였다. 넷플릭스를 정기구독 결제하는 20, 30대 300명을 대상으로 온라인 설문조사를 진행한 결과, 추천 서비스의 정확성과 다양성, 신기성이 높았을 때 지각된 유용성이 높아짐을 확인하였다. 높은 지각된 유용성은 넷플릭스 이용 전후의 기대충족으로 이어진다는 점 역시 확인하였다. 도출된 연구 결과는 개인화된 추천 서비스 평가에서 이용자 경험 측면의 중요성과 추천 서비스 품질 개선 방안에 대한 시사점을 제공할 수 있을 것이다.

Assessing Personalized Recommendation Services Using Expectancy Disconfirmation Theory

  • Il Young Choi;Hyun Sil Moon;Jae Kyeong Kim
    • Asia pacific journal of information systems
    • /
    • 제29권2호
    • /
    • pp.203-216
    • /
    • 2019
  • There is an accuracy-diversity dilemma with personalized recommendation services. Some researchers believe that accurate recommendations might reinforce customer satisfaction. However, others claim that highly accurate recommendations and customer satisfaction are not always correlated. Thus, this study attempts to establish the causal factors that determine customer satisfaction with personalized recommendation services to reconcile these incompatible views. This paper employs statistical analyses of simulation to investigate an accuracy-diversity dilemma with personalized recommendation services. To this end, we develop a personalized recommendation system and measured accuracy, diversity, and customer satisfaction using a simulation method. The results show that accurate recommendations positively affected customer satisfaction, whereas diverse recommendations negatively affected customer satisfaction. Also, customer satisfaction was associated with the recommendation product size when neighborhood size was optimal in accuracy. Thus, these results offer insights into personalizing recommendation service providers. The providers must identify customers' preferences correctly and suggest more accurate recommendations. Furthermore, accuracy is not always improved as the number of product recommendation increases. Accordingly, providers must propose adequate number of product recommendation.

디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법 (Semantics Environment for U-health Service driven Naive Bayesian Filtering for Personalized Service Recommendation Method in Digital TV)

  • 김재권;이영호;김종훈;박동균;강운구
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권8호
    • /
    • pp.81-90
    • /
    • 2012
  • 디지털 TV에서 시멘틱 환경의 유헬스 개인화 서비스 추천은 개인의 신체조건, 질병, 건강상태를 평가해서 이루어져야 한다. 기존의 시멘틱 환경의 유헬스 개인화 추천 방법은 온톨로지에 의존하여 의미 분석으로 추천을 하기 때문에 사용자 만족도가 떨어진다. 이에 본 논문에서는 디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법을 제안한다. 제안하는 방법은 온톨로지를 이용하여 상황데이터를 추론하여 트렌젝션을 저장 하고, 선호도 정보를 이용한 나이브 베이지안 필터링 기법을 사용하여 온톨로지로부터 생성된 트렌젝션과 사용자 선호도 정보를 이용하여 추론하여 서비스를 제공한다. 나이브 베이지안 필터링 기반으로 추론된 서비스는 기존의 필터링 방법 보다 콘텐츠 추천의 높은 정확도와 재현율을 보인다.

자유 위협과 개인화에 대한 사용자의 지각이 상품 추천 서비스 수용에 미치는 영향 (Effects of the User's Perceived Threat to Freedom and Personalization on Intention to Use Recommendation Services)

  • 이규동;김종욱;이원준
    • Asia pacific journal of information systems
    • /
    • 제17권1호
    • /
    • pp.123-145
    • /
    • 2007
  • There are flourishing studies in the acceptance or usage of information systems literature. Most of them have taken the pro - acceptance view. Undesirably, information technologies often provoke users' reactance or resistance. This paper explores one of the negative reactions -psychological reactance. The present paper studies the effects of the users' perception of threatened freedom and personalization degree on intention to use recommendation services. High personalization can be a major motivation for users to accept recommendation systems. However recommendation services are a two-edged sword, which not only provides users the efficiency of decision making but also poses threats to free choice. When people consider that their freedom is reduced or threatened by others, they experience the motivational state to restore the freedom. This motivational state must be considered in understanding usage of information systems, especially personalized services which are designed for persuasion or compliance. This paper empirically investigates the effect of personalization and the psychological reactance on the intention to use information systems in the personalized recommendation context. Users' perception of personalization increases the usefulness of recommendation service while their perception of threat to freedom reduces the intention to use personalized recommendation service. Findings and implications are discussed.

도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템 (Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts)

  • 안희정;김기원;김승훈
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

L-PRS: A Location-based Personalized Recommender System

  • Kim, Taek-hun;Song, Jin-woo;Yang, Sung-bong
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.113-117
    • /
    • 2003
  • As the wireless communication technology advances rapidly, a personalization technology can be incorporated with the mobile Internet environment, which is based on location-based services to support more accurate personalized services. A location-based personalized recommender system is one of the essential technologies of the location-based application services, and is also a crucial technology for the ubiquitous environment. In this paper we propose a framework of a location-based personalized recommender system for the mobile Internet environment. The proposed system consists of three modules the interface module, the neighbor selection module and the prediction and recommendation module. The proposed system incorporates the concept of the recommendation system in the Electronic Commerce along with that of the mobile devices for possible expansion of services on the mobile devices. Finally a service scenario for entertainment recommendation based on the proposed recommender system is described.

  • PDF

챗봇 기반의 개인화 패션 추천 서비스 향상을 위한 사용자-제품 속성 제안 (Proposal for User-Product Attributes to Enhance Chatbot-Based Personalized Fashion Recommendation Service)

  • 안효선;김성훈;최예림
    • 패션비즈니스
    • /
    • 제27권3호
    • /
    • pp.50-62
    • /
    • 2023
  • The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.