• Title/Summary/Keyword: Personalized recommendation service

Search Result 153, Processing Time 0.019 seconds

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

Influence A Study on the Effects of Personalized Recommendation Service of OTT Service on the Relationship Strength and Customer Loyalty in Accordance with Type of Contents (콘텐츠 유형에 따라 OTT 서비스의 개인화추천서비스가 관계강화 및 고객충성도에 미치는 영향)

  • Kim, Minjoo;Kim, Minkyun
    • Journal of Service Research and Studies
    • /
    • v.8 no.4
    • /
    • pp.31-51
    • /
    • 2018
  • The objective of this study is to suggest the measures for providing the personalized recommendation service, by analyzing the effects of personalized recommendation service of OTT service on the relationship strength and customer loyalty, and also to verify the differences in meanings of personalized recommendation service in accordance with the type of contents. In the results of this study, the personalized recommendation service has significant effects on the customer loyalty with the mediation of relationship strength, and in accordance with the type of contents mainly used by customers, there are differences in the effects of personalized recommendation service on the customers. Personalized recommendation service could be used as a tool for strengthening the relationship by inducing the commitment, which could improve the customer loyalty. When the contents have more active communications with customers, personalized recommendation service could largely contribute to the improvement of loyalty.

Personalized Recommendation System for Location Based Service

  • Lee Keumwoo;Kim Jinsuk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The location-based service is one of the most powerful services in the mobile area. The location-based service provides information service for moving user's location information and information service using wire / wireless communication. In this paper, we propose a model for personalized recommendation system which includes location information and personalized recommendation system for location-based service. For this service system, we consider mobile clients that have a limited resource and low bandwidth. Because it is difficult to input the words at mobile device, we must deliberate it when we design the interface of system. We design and implement the personalized recommendation system for location-based services(advertisement, discount news, and event information) that support user's needs and location information. As a result, it can be used to design the other location-based service systems related to user's location information in mobile environment. In this case, we need to establish formal definition of moving objects and their temporal pattern.

  • PDF

The Effects of Perceived Netflix Personalized Recommendation Service on Satisfying User Expectation (지각된 넷플릭스 개인화 추천 서비스가 이용자 기대충족에 미치는 영향)

  • Jeong, Seung-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.164-175
    • /
    • 2022
  • The OTT (Over The Top) platform promotes itself as a distinctive competitive advantage in that it allows users to stay on the platform longer and visit more often through a Personalized Recommendation Service. In this study, the characteristics of the Personalized Recommendation Service are divided into three categories: recommendation accuracy, recommendation diversity, and recommendation novelty. Then proposed a research model which affects the usefulness of users to recognize recommendation services by each characteristics and leads to satisfaction of expectations. The result of conducting an online survey of 300 people in their 20s and 30s who subscribe Netflix shows that the perceived usefulness increased when the accuracy, variety, and novelty of Netflix's Recommendation Service were high. It was also confirmed that high perceived usefulness leads to satisfaction of expectations before and after Netflix use. The derived research results can confirm the importance of evaluating the personalized recommendation service in terms of user experience and provide implications for ways to improve the quality of recommendation services.

Assessing Personalized Recommendation Services Using Expectancy Disconfirmation Theory

  • Il Young Choi;Hyun Sil Moon;Jae Kyeong Kim
    • Asia pacific journal of information systems
    • /
    • v.29 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • There is an accuracy-diversity dilemma with personalized recommendation services. Some researchers believe that accurate recommendations might reinforce customer satisfaction. However, others claim that highly accurate recommendations and customer satisfaction are not always correlated. Thus, this study attempts to establish the causal factors that determine customer satisfaction with personalized recommendation services to reconcile these incompatible views. This paper employs statistical analyses of simulation to investigate an accuracy-diversity dilemma with personalized recommendation services. To this end, we develop a personalized recommendation system and measured accuracy, diversity, and customer satisfaction using a simulation method. The results show that accurate recommendations positively affected customer satisfaction, whereas diverse recommendations negatively affected customer satisfaction. Also, customer satisfaction was associated with the recommendation product size when neighborhood size was optimal in accuracy. Thus, these results offer insights into personalizing recommendation service providers. The providers must identify customers' preferences correctly and suggest more accurate recommendations. Furthermore, accuracy is not always improved as the number of product recommendation increases. Accordingly, providers must propose adequate number of product recommendation.

Semantics Environment for U-health Service driven Naive Bayesian Filtering for Personalized Service Recommendation Method in Digital TV (디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법)

  • Kim, Jae-Kwon;Lee, Young-Ho;Kim, Jong-Hun;Park, Dong-Kyun;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.81-90
    • /
    • 2012
  • For digital TV, the recommendation of u-health personalized service of semantic environment should be done after evaluating individual physical condition, illness and health condition. The existing recommendation method of u-health personalized service of semantic environment had low user satisfaction because its recommendation was dependent on ontology for analyzing significance. We propose the personalized service recommendation method based on Naive Bayesian Classifier for u-health service of semantic environment in digital TV. In accordance with the proposed method, the condition data is inferred by using ontology, and the transaction is saved. By applying naive bayesian classifier that uses preference information, the service is provided after inferring based on user preference information and transaction formed from ontology. The service inferred based on naive bayesian classifier shows higher precision and recall ratio of the contents recommendation rather than the existing method.

Effects of the User's Perceived Threat to Freedom and Personalization on Intention to Use Recommendation Services (자유 위협과 개인화에 대한 사용자의 지각이 상품 추천 서비스 수용에 미치는 영향)

  • Lee, Gyu-Dong;Kim, Jong-Uk;Lee, Won-Jun
    • Asia pacific journal of information systems
    • /
    • v.17 no.1
    • /
    • pp.123-145
    • /
    • 2007
  • There are flourishing studies in the acceptance or usage of information systems literature. Most of them have taken the pro - acceptance view. Undesirably, information technologies often provoke users' reactance or resistance. This paper explores one of the negative reactions -psychological reactance. The present paper studies the effects of the users' perception of threatened freedom and personalization degree on intention to use recommendation services. High personalization can be a major motivation for users to accept recommendation systems. However recommendation services are a two-edged sword, which not only provides users the efficiency of decision making but also poses threats to free choice. When people consider that their freedom is reduced or threatened by others, they experience the motivational state to restore the freedom. This motivational state must be considered in understanding usage of information systems, especially personalized services which are designed for persuasion or compliance. This paper empirically investigates the effect of personalization and the psychological reactance on the intention to use information systems in the personalized recommendation context. Users' perception of personalization increases the usefulness of recommendation service while their perception of threat to freedom reduces the intention to use personalized recommendation service. Findings and implications are discussed.

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

L-PRS: A Location-based Personalized Recommender System

  • Kim, Taek-hun;Song, Jin-woo;Yang, Sung-bong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.113-117
    • /
    • 2003
  • As the wireless communication technology advances rapidly, a personalization technology can be incorporated with the mobile Internet environment, which is based on location-based services to support more accurate personalized services. A location-based personalized recommender system is one of the essential technologies of the location-based application services, and is also a crucial technology for the ubiquitous environment. In this paper we propose a framework of a location-based personalized recommender system for the mobile Internet environment. The proposed system consists of three modules the interface module, the neighbor selection module and the prediction and recommendation module. The proposed system incorporates the concept of the recommendation system in the Electronic Commerce along with that of the mobile devices for possible expansion of services on the mobile devices. Finally a service scenario for entertainment recommendation based on the proposed recommender system is described.

  • PDF

Proposal for User-Product Attributes to Enhance Chatbot-Based Personalized Fashion Recommendation Service (챗봇 기반의 개인화 패션 추천 서비스 향상을 위한 사용자-제품 속성 제안)

  • Hyosun An;Sunghoon Kim;Yerim Choi
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.50-62
    • /
    • 2023
  • The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.