With the proliferation of internet, it is increasingly needed to realize personalized news filtering service reflecting user's interest. In this Paper, we implement a filtering agent for Personalized news service. In the proposed system, Kohonen network for an unsupervised learning is used to train keywords provided by users and the personalization is achieved by using the trained neural network. After we trained and tested our filtering agent we could provide users news groups considering their interests.
본 논문은 웹 도큐먼트를 기반으로 사용자에게 의미 있는 정보를 찾아주기 위한 연관 객체 추출 기법인 PMPL(Personalized Multi-Strategey Pattern Loaming) 시스템을 제안하고자 한다. PMPL 모듈은 인터넷의 정보를 여과하여 필터링하고, 사용자 개인화의 키워드를 중심으로 연관된 객체를 추출한다. 이때 연관된 객체 추출 시 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관 탐색 기법인 Fp-Tree와 Fp-Growth 알고리즘을 적용시켰으며, 연관규칙 탐색을 보완하기 위해 가중치 기법인 만유인력 기법을 적용시켰다. PMPL 시스템을 실행한 결과 개인화된 사용자 중심어 기초로 기존의 단일 학습 기법에 비해 더 많은 의미 있는 연관 지식을 추출한 결과가 보였다.
전통적인 면대면 수업에 비하여 온라인 학습은 학습자에게 더 심한 고립감을 유발하며, 또한 높은 중도 탈락률을 보인다. 이러한 현상은 온라인 학습에서 학습자 간의 상호작용, 소속감, 상호의존성, 상호유대감, 지속적 학습을 가능하게 하는 사회적 환경의 부족함에서 기인한다. 그러므로 e-learning 공동체에서는 중도 탈락률을 낮추고 학습자의 고립감을 해소하도록 하는 것이 매우 중요하다. 따라서 본 논문에서는, 바람직한 학습공동체 형성을 위하여 적용될 취향검사 항목에 대한 연구를 수행하였으며, 이를 바탕으로 온라인상에서 취향검사의 동질성과 다양성을 결합한 지능적 멀티에이전트 기법에 의한 학습공동체 e-learning 그룹핑 시스템(GSE)을 개발하였다. GSE 시스템은 에이전트에 의해 개인화된 사용자 프로파일을 구축하여 사용자 취향에 따른 그룹핑을 자동적으로 수행하는 것이 특징이다. 이 시스템을 실제 테스트해 본 결과, 학습자들의 약 88%가 만족함을 나타냈으며 그룹이 계속 유지되거나 해체되지 않기를 원하는 것으로 나타났다.
사용자 의도 파악(intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김하고 있다 이 논문에서는 스마트 홈(smart home) 환경에서 제공 가능한 개인화된 서비스 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분한 경우가 많아서 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률 (probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링(IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 이용한 다양한 학습 제어 구조를 바탕으로 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 하고, 실험 결과를 통해 제안된 시스템의 효용성을 보이도록 한다.
Journal of information and communication convergence engineering
/
제22권1호
/
pp.56-63
/
2024
Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.
Experience API provides a learner-centered model for learning data collection and learning process recording. In particular, it can record learning data from multiple data sources. Therefore, Experience API provides very good support for ubiquitous learning. In this paper, we put forward the architecture of ubiquitous learning system and the method of reading the learning record from the ubiquitous learning system. We analyze students' learning behavior from two aspects: horizontal and vertical, and give the analysis results. The system can provide personalized suggestions for learners according to the results of learning analysis. According to the feedback from learners, we can see that this u-learning system can greatly improve learning interest and quality of learners.
Kim, Jeonghyun;Park, Yeonjeong;Huh, Dami;Jo, Il-Hyun
Educational Technology International
/
제18권2호
/
pp.73-99
/
2017
The learning analytics dashboard (LAD) is a supporting tool for teaching and learning in its personalized, automatic, and visual aspects. While several studies have focused on the effect of using dashboard on learning achievement, there is a research gap concerning the impacts of learners' characteristics on it. Accordingly, this study attempted to verify the differences in learning achievement depending on learning motivation level (high vs. low) and dashboard intervention (use vs. non-use). The final participants were 231 university students enrolled in a basic statistics course. As a research design, a 2 × 2 factorial design was employed. The results showed that learning achievement varied with dashboard intervention and the interaction effect was significant between learning motivation and dashboard intervention. The results imply that the impact of LAD may vary depending on learner characteristics. Consequently, this study suggests that the dashboard interventions should be offered after careful consideration of individual students' differences, particularly their learning motivation.
This study suggests the emotion space modeling and emotion inference methods suitable for personalized services based on psychological and emotional models. For personalized emotion space modeling taking into account the subjective disposition based on the empirical assessment of the personal emotions felt by the personalization process of emotion space was used as a decision support tool, the Analytic Hierarchy Process. This confirmed that the special learning to perform personalized emotion space modeling without considering the subjective tendencies. In particular to check the possible reasoning based on fuzzy emotion space modeling and sensitivity for the quantification and vague human emotion to it based on the inherent human sensitivity.
인터넷이 보편화되고 교육 분야에서도 웹을 이용한 원격 학습에 많은 연구와 기술이 개발이 이루어지고 있다. 그러나 기존의 e-learning 시스템은 학습 자원의 재사용 문제 등 여러 가지 문제점이 제시되고 있다. 본 논문에서는 학습 컨텐츠의 제작과 학습 관리 시스템의 구현에 있어 학습의 상호 작용성을 높이고 학습자의 개별적인 특성에 알맞게 지능적으로 학습을 지원할 수 있는 학습 관리 로직을 설계한다. 또한 컨텐츠의 재사용을 고려하여 시스템간 상호 운용성을 보장할 수 있는 SCORM 표준을 기반으로 한 학습관리 시스템을 설계한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.