In spite of the rapid growth of mobile multimedia contents market, most of the customers experience inconvenience, lengthy search processes and frustration in searching for the specific multimedia contents they want. These difficulties are attributable to the current mobile Internet service method based on inefficient sequential search. To overcome these difficulties, this paper proposes a MOBIIe COntents Recommender System for Movie(MOBICORS-Movie), which is designed to reduce customers' search efforts in finding desired movies on the mobile Internet. MOBICORS-Movie consists of three agents: CF(Collaborative Filtering), CBIR(Content-Based Information Retrieval) and RF(Relevance Feedback). These agents collaborate each other to support a customer in finding a desired movie by generating personalized recommendations of movies. To verify the performance of MOBICORS-Movie, the simulation-based experiments were conducted. The results from this experiments show that MOBICORS-Movie significantly reduces the customer's search effort and can be a realistic solution for movie recommendation in the mobile Internet environment.
최근 폭소노미라고 불리는 데이터들이 사용자의 의도 파악 및 흥미를 분석하는 데에 매우 유용하게 쓰이고 있다. 본 논문은 폭소노미 데이터를 이용한 개인화 검색에서, 기존의 벡터 기반 프로파일링 및 유사도 계산 모델의 한계점을 지적하고, 이러한 한계를 극복하기 위한 방법으로 그래프 기반의 프로파일링 및 유사도 계산법을 제안한다. 최종적으로 그래프 기반의 개인화 검색 모델에 추가적으로 질의어간의 근접성까지 고려한 보다 발전된 개인화 검색 기법을 제안하였다. 본 연구에서는 복수의 데이터셋을 사용한 객관적인 성능 평가 실험을 통해 제안한 모델이 기존의 벡터 스페이스 모델에 기반한 프로파일링 기법 및 프로파일 간의 유사도 계산 기법보다 더 뛰어난 개인화 검색 결과를 제공함을 확인하였다. 또한 추가적인 파라미터 실험을 통하여, 제안하는 모델은 어떠한 형태의 데이터셋에도 쉽게 적용가능함을 보였다.
사람들은 월드 와이드 웹(World Wide Web)상에서 사용자가 원하는 정보를 검색하는 여러 알고리즘들을 구현해 왔다. 이렇게 구현된 검색 알고리즘 중 가장 좋은 기술을 가지고 있는 곳은 페이지랭크(PageRank)방식의 구글이다. 하지만 페이지랭크 방식, 즉 외부에서 강조하는 링크가 많은 문서로 검색하여 가장 많은 링크를 가기고 있는 문서를 상위에 보여주는 방식으론 사용자가 원하는 문서를 찾기 힘들다. 개인에게 가치가 있는 문서를 찾기보다 대중에게 가치가 있는 문서를 찾기 때문이다. 이러한 문제를 해결하기 위하여 본 논문에서는 대중적 가치와 개인적 가치를 혼합한 개인화 검색 엔진을 제안한다.
Personalized product recommendation service is receiving attention as a new marketing strategy while supporting consumer information search and purchasing decisions. This study attempted to verify the effect of self-reference on service use behavior through the dual path of cognitive attitude and emotional attachment. Using convenience sampling, an online survey was conducted with 324 women who were in their 20s and 30s. After collecting and compiling the survey data, the reliability and validity of variables constituting the conceptual research model were verified through confirmatory factor analysis using AMOS 22.0. Next, the significance of sequentially mediated pathways was verified using Process 3.5 Model 80. The results showed that self-referencing not only significantly affects service use intention by simply mediating cognitive attitudes but also sequentially mediates cognitive attitudes and additional information search. Furthermore, self-referencing was significant as an indirect path to service use intention by mediating additional information search. However, in the path mediated by emotional attachment, self-referencing was considered as a simple mediated path leading to service usage intention. These results indicate a dual path in the psychological mechanism, through cognitive and emotional evaluation, that prompts consumer behavioral responses to the personalized product information provided in the shopping process.
This paper suggests an e-learning system model, a goal-driven personalized e-learning system, which increase the effectiveness of learning. An e-learning system following this model makes the learner choose the learning goal. The learner's choice would lead learning. Therefore, the system enables a personalized adaptive learning, which will raise the effectiveness of learning. Moreover, this paper proposes a SCORM standard, which modifies SCORM 2004 that has been insufficient to implement the "goal driven personalized e-learning system." We add a data model representing the goal that motivates learning, and propose a standard for statistics on learning objects usage. We propose each standard for contents model and sequencing information model which are parts of "goal driven personalized e-learning system." We also propose that manifest file should be added for the standard for contents model, and the file which represents the information of hierarchical structure and general learning paths should be added for the standard for sequencing information model. As a result, the system could sequence and search learning objects. We proposed an e-learning system and modified SCORM standards by considering the many factors of adaptive learning. We expect that the system enables us to optimally design personalized e-learning system.
웹 문서 수의 급증으로 인해 인터넷을 검색할 때마다 발생하는 정보의 과부하 문제가 심각하게 부각되었다. 웹 검색 결과를 개선하기 위하여 개발된 기존의 알고리즘들은 주로 사용자의 질의어 및 선호어와 문서의 링크수를 이용하였다. 본 연구에서는 실험을 통하여 이 두가지 요소들을 이용한 검색 결과의 성능을 알아보고 이들 요소들 외에 선호하는 웹문서의 선택 기준을 조사 분석하였다. 실험 결과 질의어 및 선호어를 이용한 개인화된 검색 결과는 현 검색 엔진에 비해 최대 약 1.7배의 성능 향상을 가져 왔으며, 링크수를 이용한 검색 결과는 최대 약 1.3배의 향상을 보였다. 사용자가 웹문서를 선호하는 기준은 문서 내용이 최우선이었으나, 가독성과 문서가 포함한 이미지도 큰 비중을 차지하였다. 따라서 질의어 및 선호어 개수 이외에 각 사용자의 성향에 부합하는 객관적 데이터를 추가적으로 활용한다면 웹 검색 개인화 알고리즘의 성능이 크게 향상될 수 있을 것이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권11호
/
pp.3937-3954
/
2014
With the increasing electricity consumption and the wide application of renewable energy sources, energy auction attracts a lot of attention due to its economic benefits. Many schemes have been proposed to support energy auction in smart grid. However, few of them can achieve range query, ranked search and personalized search. In this paper, we propose an efficient multi-keyword range query (EMRQ) scheme, which can support range query, ranked search and personalized search simultaneously. Based on the homomorphic Paillier cryptosystem, we use two super-increasing sequences to aggregate multidimensional keywords. The first one is used to aggregate one buyer's or seller's multidimensional keywords to an aggregated number. The second one is used to create a summary number by aggregating the aggregated numbers of all sellers. As a result, the comparison between the keywords of all sellers and those of one buyer can be achieved with only one calculation. Security analysis demonstrates that EMRQ can achieve confidentiality of keywords, authentication, data integrity and query privacy. Extensive experiments show that EMRQ is more efficient compared with the scheme in [3] in terms of computation and communication overhead.
Nowadays a personalization algorithm is gaining huge attention. It gives users selective information which is helpful and interesting in a deluge of information based on their past behavior on the internet. However there is also a fatal side effect that the user can only get restricted information on restricted topics selected by the algorithm. Basically, the personalization algorithm makes users have a narrower perspective and even stronger bias because users have less chances to get views of opponent. Eli Pariser called this problem the 'filter bubble' in his book. It is important to understand exactly what a filter bubble is to solve the problem. Therefore, this paper shows how much Google's personalized search algorithm influences search result through an experiment with deep neural networks acting like users. At the beginning of the experiment, two Google accounts are newly created, not to be influenced by the Google's personalized search algorithm. Then the two pure accounts get politically biased by two methods. We periodically calculate the numerical score depending on the character of links and it shows how biased the account is. In conclusion, this paper shows the formation process of filter bubble by a personalization algorithm through the experiment.
본 논문에서는 개인 맞춤 도서 추천을 위한 시맨틱웹 접근방법을 제안한다. 제안방법은 콘텐츠 기반 추천을 이용하면서도 사용자가 모든 도서 검색 시스템에 자신의 관심분야를 등록해야 하는 단점을 개선한다. 제안방법은 다양한 서지정보제공자의 도서분류 온톨로지상에서 자신의 관심분야를 등록할 수 있게 함으로써 사용자 프로파일을 공유한다. 또한 사용자 프로파일 관리 시스템은 제안방법에 의해 작성된 사용자 프로파일을 관리하고, 사용자의 관심분야와 도서분류 온톨로지상의 각 개념과의 유사성을 분석하는 기능을 제공한다. 제안방법은 사용자 프로파일의 공유를 통해 기존 키워드 검색에 비해 더 향상된 효율성을 제공한다.
이 논문은 사용자의 쿼리와 사용자의 행동양식을 바탕으로 상대네트워크를 구축함으로써 개인화된 논문검색 시스템을 모델링한 것이다. 제안하는 시스템은 사용자가 검색한 논문에서 키워드의 빈도수를 분석하여 개인적 상대네트워크를 구축하게 되는데, 이 네트워크는 다운로드, 열기, 삭제 등과 같은 사용자의 행동으로부터 키워드간 가중치를 조정을 함으로써 구축된다. 시스템의 성능평가를 위해 수원대학교에 있는 100명의 사용자들을 대상으로 실험한 결과, 기존의 검색엔진을 사용했을 때보다 성능이 우수하여 사용자 만족도가 높게 나타남을 알 수 있었다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.