• 제목/요약/키워드: Persistent organic matter

검색결과 17건 처리시간 0.026초

POPs의 순환에 미치는 유기물 및 black carbon의 역할 (The Role of Organic Matter and Black Carbon on the Cycling of Persistent Organic Pollutants (POPs))

  • 남재작;홍석영;김계훈
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권3호
    • /
    • pp.255-266
    • /
    • 2006
  • Soil organic matter (OM) is well documented for its capacity to retain persistent organic pollutants (POPs) and thus is important in dictating the environmental partitioning of POPs between media such as air, water, and soil. Black carbon (BC) is a small component of OM and exhibitt a 10$\sim$100 times greater sorption capacity of POPs than humified OM. Furthermore, due to the inherent long environmental life time of BC, a result of its resistance to physical and biological degradation, POPs can continue to accumulate in BC over a long period of time. The unique properties of BC have been of particular interest over the last 30 years and have resulted in broad research being conducted into its effects of POP cycling in atmospheric, oceanographic and soil matrices. The results of such studies have proved valuable In providing new research initiatives into the role of BC in the cycling of hydrophobic organic compounds (HOCs) as well as giving further insight into the long range atmospheric transport (LRAT) potential and subsequent risk assessment criteria for persistent organic pollutants (POPs). In this report, we introduce a novel study examining the relationships between BC and OM with respect to their POP sorption capacity and discuss the role of BC in influencing the environmental regulation of organic pollutants.

침출수 성분에 따른 난지도 매립지의 안정화 평가 (Evaluation of Nanjido Landfill Site Stabilization by Leachate Component)

  • 이제승;서미연;김현국;이승주;김광진;신정식
    • 환경위생공학
    • /
    • 제19권3호
    • /
    • pp.13-21
    • /
    • 2004
  • This study was focused on the evaluation of Nanjido landfill site by leachate analysis. Several parameters, for example pH, BOD, $COD_{Mn},\;COD_{Cr}$, SS, TP, $NH_3-N$, Color, were selected as major leachate quality parameters. $BOD/COD_{Cr}$. was used to estimate the biodegradable portion in organic matter. Samples were collected at the leachate storage wells and leachate treatment facility inflow in each quarter of 2003. The results were as follows : 1. Inflow quality of treatment plant in 2003 was analysed as $pH\;7.3\~8.0,\;BOD\;12.4\~30.0mg/L,\;COD_{Mn}\;101.2\~130.3mg/L,\;COD_{Cr}\;122.5\~238.0mg/L,\;SS\;16.1\~115.3mg/L$, $T-P\;0.27\~0.80mg/L,\;NH_3-N\;208.0\~~354.0mg/L$, Color $110.3\~129.0$ unit. 2. $BOD/COD_{Cr}$ of inflow ranged between $0.07\~0.16$ indicating that the landfill had the properties of old-fill and organic portion in leachate was mostly persistent organic matter. 3. Though concentrations of BOD, COD, $NH_3-N$, Color in leachate storage wells were mostly higher in first landfill than in second landfill, $BOD/COD_{Cr}$ ranging from 0.03 to 0.20, showed reversely. 4. Correlation coefficient$(R^2)$ between color and other parameters related to organic matter showed mostly above 0.7 and especially highest value with $COD_{Mn}$ of 0.7985.

토양유기물 함량이 인삼근의 endosulfan 흡수이행에 미치는 영향 (Effect of soil organic matter content on plant uptake factor of ginseng for endosulfan)

  • 오경열;최근형;배지연;이득영;이성우;김진효
    • Journal of Applied Biological Chemistry
    • /
    • 제63권4호
    • /
    • pp.401-406
    • /
    • 2020
  • 본 연구에서는 경작지 포장 조사를 통한 인삼근의 endosulfan 흡수이행성(PUF)을 산출하고, 토양 유기물 함량과 endosulfan에 대한 인삼근의 PUF에 관한 상관성을 분석하였다. Endosulfan 흡수이행 시험포장의 총 endosulfan 잔류량은 0.013-0.136 mg kg-1이었다. Endosulfan에 대한 인삼근의 PUF는 0.243-1.708로 인삼근의 연령이 증가할수록 비대생장에 의한 PUF값 감소가 확인되었다. 또한, 토양 유기물 함량과 endosulfan에 대한 인삼근의 PUF값은 5% 유의수준에서 음의 상관관계가 있음을 확인하였다(R2=0.6102). 따라서, endosulfan 오염 우려지역에서의 인삼경작을 위해서는 가급적 높은 토양유기물 함량을 유지하는 것이 endosulfan의 흡수이행을 억제하는데 도움을 줄 수 있을 것이다.

병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가 (Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics)

  • 오승용;윤영만
    • 한국환경농학회지
    • /
    • 제35권2호
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Effects of Hydro-thermal Reaction Temperature on Anaerobic Biodegradability of Piggery Manure Hydrolysate

  • Kim, Ho;Jeon, Yong-Woo
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.602-609
    • /
    • 2015
  • In order to enhance a biogas production by the hydro-thermal pre-treatment of piggery manure, the effects of hydro-thermal reaction temperature at thermal hydrolysis of piggery manure on the methane potential and anaerobic biodegradability of thermal hydrolysate were analyzed. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ caused the enhancement of hydrolysis efficiency, and most of organic matters were present in soluble forms. However, the methane potentials ($B_u-TCOD$) of hydrolysate were decreased from 0.239 to $0.188Nm^3kg^{-1}-TCOD_{added}$ by increasing hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$, and also the anaerobic biodegradability (DTCOD) decreased from 74.6% to 58.6% with increase of hydro-thermal reaction temperature. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ resulted in the decrease of easily biodegradable organic matter content, while persistent organic matter contents increased.

The Determination of Anaerobic Biodegradability Rates Livestock Byproducts Using Double First-Order Kinetic Model

  • Shin, Kook-Sik;Yoon, Young-man;Jung, Ha-Il;Hyun, Byung-Geun;Cho, Hyun-Joon;Sonn, Yeon-Kyu
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.542-548
    • /
    • 2015
  • This study investigated methane productions and a degradation rate of organic matters by German standard method, VDI4630 test. In this study, 4 livestock byproducts from livestock farm were selected for the investigation. The objective of this study was to estimate a distribution of organic matters by using the double first-order kinetics model in order to calculate the rate of biodegradable organic matters which degrade rapidly in the initial stage and the persistently biodegradable organic matters which degrade slowly later. As a result, all the byproducts applied in this study showed rapid decomposition in the initial stage. Then the decomposition rate began to slow down for a certain period and the rate became 5 times slower than the initial decomposition rate. This trend of decomposition rate changes is typical conditions of organic matter decompositions. The easily degradable factors ($k_1$) ranged between $0.145{\sim}0.257day^{-1}$ and persistent degradable factors ($k_2$) were $0.027{\sim}0.080day^{-1}$. Among these results, greater organic matter decomposition rates from VDI4630 had greater $k_1$ values (0.257, $0.211day^{-1}$) and smaller $k_2$ values (0.027, $0.030day^{-1}$) for dairy wastewater and forage byproduct, respectively.

Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater

  • Verma, Manisha;Haritash, A.K.
    • Advances in environmental research
    • /
    • 제9권1호
    • /
    • pp.1-17
    • /
    • 2020
  • Pharmaceutically active compounds (PhACs) have become an environmental havoc in last few decades with reported cases of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), lethal effects over aquatic organisms, interference in natural decomposition of organic matter, reduced diversity of microbial communities in different environmental compartments, inhibition of growth of microbes resulting in reduced rate of nutrient cycling, hormonal imbalance in exposed organisms etc. Owing to their potential towards bioaccumulation and persistent nature, these compounds have longer residence time and activity in environment. The conventional technologies of wastewater treatment have got poor efficiency towards removal/degradation of PhACs and therefore, modern techniques with efficient, cost-effective and environment-friendly operation need to be explored. Advanced oxidation processes (AOPs) like Photocatalysis, Fenton oxidation, Ozonation etc. are some of the promising, viable and sustainable options for degradation of PhACs. Although energy/chemical or both are essentially required for AOPs, these methods target complete degradation/mineralization of persistent pollutants resulting in no residual toxicity. Considering the high efficiency towards degradation, non-toxic nature, universal viability and acceptability, AOPs have become a promising option for effective treatment of chemicals with persistent nature.

Changes of Distribution Coefficients of Cu, Cr, and As in Different Soil Matrix in a Laboratory Scale

  • Kang, Sung-Mo;Ra, Jong-Bum;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권2호
    • /
    • pp.137-140
    • /
    • 2009
  • Chromated copper arsenate (CCA), a long history of successful preservative, have raised environmental concerns. Adsorption characteristics of domestic soils for chromium, copper, and arsenic were assessed by measuring distribution coefficient ($K_d$) values of these metal components in a laboratory scale. The results revealed that $K_d$ values were higher in chromium, followed by arsenic and copper in soil matrix. Different soil matrixes resulted in varying mobilities of CCA components. The values of $K_d$ for all three metals increased with organic matter contents. The results suggest that the mobility of metal components may be very limited to the surface area adjacent to CCA-treated wood due to their fairly large distribution coefficient ($K_d$). However, the metal components would be persistent and accumulated in the soil, resulting in high chemical concentration in service area of treated wood.

반응속도 모델을 적용한 농업부산물의 혐기성 유기물분해율과 메탄생산잠재량 분석 (The Determination of Anaerobic Biodegradability and Organic Fractionation of Agricultural Byproducts by Biochemical Methane Potential Assay Using Double First-Order Kinetic Model)

  • 신국식;윤영만
    • 유기물자원화
    • /
    • 제29권4호
    • /
    • pp.55-65
    • /
    • 2021
  • 본 연구는 독일 유기물분해율 표준시험법인 VDI4630 시험을 통해 메탄 생성 및 유기물의 분해율을 조사하였으며 시험을 위해 농업 분야의 11개의 폐기물 바이오매스를 공시재료로 선택하여 시험하였다. 본 연구의 목적은 초기에 빠르게 분해되는 생분해성 유기물과 이후 천천히 지속적으로 분해되는 유기물의 비율을 계산하기 위해 Double first-order kinetics 모델을 이용하여 유기물의 분포를 추정하고자 하였다. 그 결과로 본 연구에 적용된 모든 바이오매스는 초기 단계에서 빠른 분해를 보이다가 이후 분해 속도가 일정 시간 느려지기 시작하여 초기 분해 속도보다 10배 이상 느려지는 결과를 보였다. 이러한 분해율 변화 경향은 바이오매스 분해의 전형적인 형태이며 쉽게 분해되는 인자(k1)는 채소 작물에서 0.097~0.152 day-1 범위였고, 분해에 저항성을 가지는 인자(k2)는 0.002~0.024 day-1 사이에 위치하였다. 유기물 분해율이 높을수록 k1 상수 값이 더 크게 나타났으나 (0.152, 0.144day-1) 오이와 파프리카 열매와 같이 표면에 왁스층이 존재하는 부산물은 k1 값이 오히려 줄기보다 낮았고 (0.002, 0.005day-1), 무와 귤껍질도 k1 각각 0.097과 0.094 day-1로 낮은 분해율과 k1 값을 보여 유기물의 분해율은 이분해성 유기물 분해 상수인 k1 값에 크게 영향을 미치는 것으로 분석되었다.

과불화화합물 구조적 속성에 따른 흡착 특성 연구 (Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties)

  • 최효정;김덕현;윤종현;권종범;김문수;김현구;신선경;박선화
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권5호
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.