• Title/Summary/Keyword: Perovskite oxides

Search Result 87, Processing Time 0.024 seconds

Synthesis and Characterization of Trimetallic Rare Earth Orthoferrites, $La_xSm_{1-x}FeO_3$

  • Traversa, Enrico;Gusmano, Gualtiero;Allieri, Brigida;Depero, Laura E.;Sangaletti, Luigi;Aono, Hiromichi;Sadaoka, Yoshihiko
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • Nanosized powders of trimetallic orthoferrites containing La and Sm in different ratios were synthesised by the thermal decomposition at low temperatures of the corresponding hexacyanocomplexes. The precursors and their decomposition products were analyzed by simultaneous thermogravimetric and differential thermal analysis (TG/DTA), x-ray diffraction (XRD) and Raman spectroscopy. Single phase trimetallic precursors and oxides were obtained. The crystal structure of the perovskitic oxides was orthorhombic, and the lattice parameters were affected by the ionic size of the rare earth elements present in the oxides. Raman spectroscopy showed a disorder effect in the vibrational bands with increasing the La content.

  • PDF

Catalytic Combustion of Soot Particulate over Perovskite-Type Oxides (폐롭스카이트형 촉매에서 입자상물질의 촉매연소반응)

  • Yang, Jin-Sup;Hong, Seong-Soo;Jung, Duck-Young;Oh, Kwang-Jung;Cho, Kyung-Mok;Ryu, Bong-Ki;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.803-810
    • /
    • 1998
  • We have studied the catalytic combustion of soot particulate over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxide. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studied. The effect of $SO_2$ pretreatment and water introduced into reactants were also examined. In the $LaCoO_3$ catalyst, the partial substitution of alkali metals into A site enhanced the catalytic activity in the combustion of soot particulate and the activity was shown in the order : Cs>K>Na; In the $La_{0.6}Cs_{0.4}CoO_3 $; catalyst, the substitution of Fe or Mn showed no effect on the ignition temperature. The ignition temperature decreased with increasing $O_2$ concentration and contact time. The introduction of water into reactants feed decreased the ignition temperature and the pretreatment of $SO_2$ showed no effect on the catalytic activity.

  • PDF

Synthesis and Characterization of Dense Ceramic Membranes for Methane Conversion - Part II

  • Santos, A.;Fontes, V.A.;Fontes, F.A.Oliveira;De Sousa, J.F.;De Souza, C.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1112-1113
    • /
    • 2006
  • The perovskite- type oxide $(ABO_3)$ containing transition metals on the B-site show mixed (electronic/ionic) conductivity. These mixed-conductivity oxides are promising materials for oxygen permeating membranes. The main objective of this research work is to synthesize and characterization ceramic powders of the Sr-Co-Fe-O system for methane conversion using membrane reactor. SCFO powders were synthesized from the route was based on the complex method of combination of acid EDTA and citrate and shown be available by control efficient of synthesis to performed $SrCo_{0.8}Fe_{0.2}O_{3-\delta$, moreover, it presented easy implementation, reproducibility and operation. Powder ceramic was characterized by XRD, microscopic optic, SEM and TG-DTA.

  • PDF

Synthesis and characterization of perovskite nano-sized (Pb, La)$TiO_3$ powder using mechano chemical process (기계화학공정을 이용한 Perovskite 구조의 (Pb, La)$TiO_3$ 나노 분말 합성 및 특성)

  • Lim, Bo-Ra-Mi;Yang, Jae-Kyo;Lee, Dong-Suk;Noh, Tae-Hyung;Seo, Jung-Hye;Lee, Youn-Seoung;Kim, Hee-Taik;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.200-204
    • /
    • 2008
  • Mechano Chemical Process (MCP) skips the calcinations steps at an intermediate temperature that is always required in the conventional solid-state reaction because forming phase from raw powder is activated by mechanical energy. In this study, we prepared (Pb, La)$TiO_3$ nanopowder with perovskite structure by only high energy MCP. Especially, the PLT nanopowder was synthesized without any thermal treatment using oxides, not salts as raw powder. This process is also very simple due to dry milling method, unnecessary to dry of powder. The oxide powder was milled up to 12 hr at intervals of an hour using MCP and the pure PLT phase of perovskite structure was formed after milling time of 3 hr. And the average particle size was 20 nm with narrow distribution after milling time of 3 hr from raw powder of several $\mu m$ with inhomogeneous distribution.

Study on the reducibility of substituted $LaMnO_3$ (치환된 $LaMnO_3$의 환원반응성에 대한 연구)

  • Lee, Sang-Beom;Jeon, Hyun-Pyo
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.41-54
    • /
    • 2004
  • $LaMnO_3$ and A site substituted $La_{0.9}Sr_{0.1}MnO_3$(a=$5.33\AA$, c=$13.27\AA$), B site substituted $LaMn_{0.9}Cu_{0.1}O_3$(a=$5.52\AA$, c=$13.31\AA$) mixed oxides were prepared by Citrate sol-gel method. The powder X-ray diffraction patterns of these oxides were indexed with single phase hexagonal perovskite structures. According to the TRR result, oxygen stoichiometry of these oxides were oxidative nonstoichiometry as like $LaMnO_{3.16}$, $La_{0.9}Sr_{0.1}MnO_{3.10}$ and $LaMn_{0.9}Cu_{0.1}O_{3.14}$ Reduction reactions of un-substituted $LaMnO_3$ was two steps, but specific site(A site of B site) partially substituted $LaMnO_3$ oxides were procees to three reactions.

  • PDF

Two-Dimensional Electron Gas (2DEG) at $Ta_2O_5/SrTiO_3$ Heterointerface

  • Joung, Jin Gwan;Yoo, Kwang Soo;Kim, Jin Sang;Baek, Seung-Hyub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.161-161
    • /
    • 2013
  • Two-dimensional electron gas (2DEG) has been investigated at the heterointerface between two insulating dielectric perovskite oxides, $LaAlO_3$ (LAO)/$SrTiO_3$ (STO). Properties of the 2DEG have attracted an enormous interest in condensed matter physics due to multifunctional properties such as the coexistence of ferromagnetism and superconductivity, as well as the high electron mobility. Here, we have grown $Ta_2O_5$ thin films using pulsed laser deposition on $SrTiO_3$ substrate to investigate the electric properties of the $Ta_2O_5$/STO heterointerface. Our research reveal that the non-polar $Ta_2O_5$/$TiO_2$ heterointerface favors the formation of 2DEG similar to that at the LAO/STO heterointerface. The metallic behavior was found in this heterointerface with the current about $10{\sim}100{\mu}A$ at 5 V by using conventional I-V measurements, when the $Ta_20_5$ film thickness reaches over critical thickness, $d_c{\simeq}2uc$. The finding that electrons was localized at $Ta_2O_5$/STO heterointerface have attracted to be strong and new candidate for nanoscale oxide device applications.

  • PDF

Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion

  • Shen, Qiuwan;Zheng, Ying;Luo, Cong;Zheng, Chuguang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1613-1618
    • /
    • 2014
  • Perovskite-type oxides are promising oxygen carriers in producing oxygen-enriched $CO_2$ gas stream for oxyfuel combustion. In this study, a new series of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ (x = 0.2, 0.4, 0.6, 0.8) was prepared and used to produce $O_2/CO_2$ mixture gas. The phase, crystal structure, and morphological properties of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ were investigated through X-ray diffraction, specific surface area measurements, and environmental scanning electron microscopy. The oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ was studied in a fixed-bed reactor system. Results showed that the different x values of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ have no obvious effects on crystalline structure. However, the oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ is improved by Co doping. Moreover, $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ synthesized via a new EDTA method has a larger BET surface area ($40.396m^2/g$), smaller particle size (48.3 nm), and better oxygen production performance compared with that synthesized through a liquid citrate method.

Electrocatalytic Performances of La0.6Ca0.4CoO3 and Pb2Ru2O6 prepared by Amorphous Citrate Precursor Method (Amorphous Citrate Precursor 법으로 제조한 La0.6Ca0.4CoO3와 Pb2Ru2O6의 전기화학적 촉매능)

  • Lee, Churl Kyoung;Sohn, Hun-Joon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The transition metal oxides have been of interest as bifunctional electrocatalysts for bifunctional air electrodes. The amorphous citrate precursor (ACP) process has been optimized to prepare perovskite (La0.6Ca0.4CoO3) and pyrochlore (Pb2Ru2O6) powders with high surface area, and consequent improvement of The electrocatalytic performance in an air electrode with thermal treatment. PTFE -bonded gas diffusion electrodes loaded with perovskitc and pyrochlore catalysts showed good bifunctional performances. The electrodes were fairly stable up to 100 hour in the galvanostatic mode at ${\pm}25mA/cm^2$, from which these electrodes offer promise as practical bifunctional air electrodes.

  • PDF

Ceramic Materials for Interconnects in Solid Oxide Fuel Cells - A Review (고체산화물 연료전지 연결재용 세라믹 소재)

  • Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Park, Chong-Ook;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.231-242
    • /
    • 2014
  • An interconnect in solid oxide fuel cells (SOFCs) electrically connects unit cells and separates fuel from oxidant in the adjoining cells. The interconnects can be divided broadly into two categories - ceramic and metallic interconnects. A thin and gastight ceramic layer is deposited onto a porous support, and metallic interconnects are coated with conductive ceramics to improve their surface stability. This paper provides a short review on ceramic materials for SOFC interconnects. After a brief discussion of the key requirements for interconnects, the article describes basic aspects of chromites and titanates with a perovskite structure for ceramic interconnects, followed by the introduction of dual-layer interconnects. Then, the paper presents protective coatings based on spinel-or perovskite-type oxides on metallic interconnects, which are capable of mitigating oxide scale growth and inhibiting Cr evaporation.

Studies of Nonstoichiometry and Physical Properties of the Perovskite $Sr_xHo_{1-x}FeO_{3-y}$ System

  • Ryu, Kwang-Sun;Lee, Sung-Joo;Yo, Chul-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.256-260
    • /
    • 1994
  • Perovskite type oxides of the $Sr_xHo_{1-x}FeO_{3-y}$ system with compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been prepared at 1200$^{\circ}$C in air. X-ray powder diffraction assigns the compositions with x=0.00 and 0.25 to the orthorhombic crystal system and those with x=0.50, 0.75, and 1.00 to the cubic one. The unit cell volumes of solid solutions increase with x in the system. Nonstoichiometric chemical formulas were determined by Mohr salt titration. The mole ratio of $Fe^{4+}$ ions to total iron ions and the concentration of oxygen ion vacancies increase with x. Mossbauer spectra for the compositions of x= 0.00, 0.25, and 0.50 show six lines indicating the presence of $Fe^{3+}$ ions in the octahedral site. However, the presence of $Fe^{4+}$ ions may also be detected in the spectra for the compositions with x=0.25 and x=0.50. In the compositions with x=0.75 and 1.00, single line patterns show also the mixed valence state of $Fe^{3+}$ and $Fe^{4+}$ ions. The electrical conductivity in the temperature range of -100$^{\circ}$C to 100$^{\circ}$C under atmospheric air pressure increases sharply with x but the activation energy decreases with the mole ratio of $Fe^{4+}$ ion. The conduction mechanism of the perovskite system seems to be hopping of the conduction electrons between the mixed valence iron ions.