• Title/Summary/Keyword: Peroneus longus

Search Result 59, Processing Time 0.023 seconds

Study on Muscular System about Gall Bladder Channel of Foot Soyang Muscle (족소양담경근(足少陽膽經筋)에 대한 근육학적 고찰)

  • Ryu, Hyung-Sun;Kang, Jung-Soo
    • Journal of Acupuncture Research
    • /
    • v.22 no.5
    • /
    • pp.29-36
    • /
    • 2005
  • Objectives : This study is performed to understand the interrelation between 'Foot soyang muscle of the Gall bladder channel' and 'muscular system' on the basis of the link between meridian muscle theory and myofascial pain syndrome. Methods : We have researched some of oriental medical books about meridian muscle theory and western medical books about anatomical muscular system. Results & Conclusion : 1. Myofascial pain syndrome is the medical treatment which finds the start point of the pain in fascia and then treats it on the basis of object and concrete anatomical theory, so its application is needed for objectification of the oriental medicine. 2. There is a wide difference between myofascial pain syndrome and meridian muscle theory in that the former explains each muscle individually, while the latter classifies muscles systematically in the view of organism. 3. Foot soyang muscle contains Dorsal interosseous m, Extensor digitorum longus m, Musculus peroneus brevis, longus and, tertius, lliotibial tract, Vastus lateralis m, Gluteus m, Aximus m, Piriformis m, Tensor fasciae latae m, Gluteus minimus m, Obliquus internus & externus abdominis m, External & Internal intercostal m, Serratus anterior m, Pectoralis major m, Sternocleidomastoid m, Auricularis posterior m, Temporalis m, Masseter m, Orbicularis oculi m etc. on the basis of function and the nature of a disease reflected in muscle. 4. Foot soyang muscle keeps the balance of left md right of the body on the outside, while the Gall bladder keeps the balance of the JangBuKiHyeul(臟腑氣血) on the inside.

  • PDF

Comparison of Lower Limb Muscle Activities by Various Angles of a Medio-lateral Ramp During Gait

  • Lee, Sang-Yeol;Ahn, Soo-Hong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.93-98
    • /
    • 2017
  • PURPOSE: This study investigated the activities of lower limb muscles according to the angle of a medio-lateral ramp while walking to promote awareness of the risks associated with a medio-lateral ramp. METHODS: This study was conducted on 20 healthy male adults. The muscle activities of the vastus medialis oblique (VMO), vastus lateralis oblique (VLO), tibialis anterior (TA) and peroneus longus (PL) were measured while the subjects were walking on a 3 m medio-lateral ramp. Five angles (flat, $2^{\circ}$, $5^{\circ}$, $10^{\circ}$, and $15^{\circ}$) were selected for the angle conditions of the experiment on a medio-lateral ramp. The activities were measured during the stance phase only in the middle cycle of a three-cycle walking experiment. The mean value obtained from the three walking tests was used for the analysis. RESULTS: Results showed that walking on a mediolateral ramp required more muscle activities than walking on a flat surface, through which balanced walking was achieved. CONCLUSION: Walking on a medio-lateral ramp requires proper muscle activation and control, without which the risks of injury to the joints of the lower limbs and falls are likely to increase. Therefore, special attention should be given to older people and the disabled under the condition of traversing a ramp.

Effects of ipsilateral and contralateral loading on lower extremity muscle activity during one leg standing (한발서기 동안 동측, 반대측 방향의 상지부하가 다리근육의 근활성도에 미치는 영향)

  • Heo, Jae-seok;Lee, Sang-yeol
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.1
    • /
    • pp.34-42
    • /
    • 2020
  • Background: The purpose of this study was to investigate the effects of ipsilateral and contralateral load changes during single-leg standing on the leg muscle activities of healthy people. Design: Randomized controlled trial. Methods: For all the subjects, a load was randomly applied to the ipsilateral or the contralateral side. While the load was applied, the subject raised a hand and then performed single-leg standing for 10 seconds using the dominant side. Results: During single-leg standing, the muscle activity of the gluteus medius, peroneus longus on the supporting side increased statistically significantly when an upper limb load was applied contralaterally, but no statistically significant differences were detected in the muscle activities of the tibialis anterior and the gastrocnemius using a test of within-subjects effects. Conclusion: It can be seen that muscle activities increase during exercise when the amount and frequency of a load are increased and when the same load is applied to different sides of the body. Such muscle activity increases may be applied to change the intensity of exercise when one is in a static posture, such as during single-leg standing.

Effect of the Combined Application of Mulligan Taping and Flossing Band on Muscle Activity and Balance Ability in Chronic Ankle Instability Patients

  • Jeong, Hyochang;Park, SeJin;Yu, Seunghun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effects of combining Mulligan taping and flossing bands on lower limb muscle activity and static and dynamic balance. Design: A randomized controlled trial. Methods: Sixty-eight patients with chronic ankle instability were randomized into three groups that were treated with Mulligan taping (MT, n=22), flossing band (FB, n=23) and Mulligan taping combined with flossing band (MT+FB, n=23), and various parameters were compared before and after the intervention. The muscle activity of the lower extremities, including the tibialis anterior, peroneus longus and medial of gastrocnemius muscles was measured using BTS FREE EMG 1000, while the static and dynamic balance were measured using the Biorscuue balance measuring equipment. Results: There was a significant difference in muscle activity of the tibialis anterior muscle, before and after the intervention, in the MT group (p<0.01), FB (p<0.001) and MT+FB (p<0.001). There was also a significant difference in the muscle activity of the tibialis anterior muscle in the MT+FB group when compared with that in MT and FB groups (p<0.05). We also observed a significant difference in the dynamic balance all the groups (p<0.001). Conclusions: Therefore, combining Mulligan taping and flossing bands for patients with chronic ankle instability may improve dynamic balance and tibialis anterior muscle activity.

Influence of the Knee Angles on the Electromyographic Activites and Fatigue of the Ankle Muscles in Healthy Subjects (무릎관절 각도가 발목 근육의 근전도 활동에 미치는 영향)

  • Yu, Gyeong-Seok;Kim, Taek-Yean
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.12 no.1
    • /
    • pp.16-26
    • /
    • 2006
  • The purpose of this study was to investigate the influence of the various knee angles and ground state on the muscular activities and fatigue of the ankle muscles by integrated electromyograms (iEMG) and median frequency of tibialis anterior (TA), peroneus longus (PL), flexor digitorum longus (FDL) and gastrocnemius (GC). Ten healthy male subjects were participated into stable and balance ball sessions at four angles of knee joint. The surface electromyograms (sEMG) were recorded from the TA, PL, FDL and GC on stable and balance ball with full weight bearing at four knee angles of $0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$. The time serial data of the surface electromyographic signals were transformed into integrated and frequency serial data by fast fourier transformation. On the stable ground, the iEMG signals of the TA, PL, FDL and GC were significantly higher at $45^{\circ}$ and $30^{\circ}$ of knee angles than $0^{\circ}$ and $15^{\circ}$ of knee flexion (p<0.05). On the balance ball, the iEMG of the TA, PL, FDL and GC were significantly higher at $45^{\circ}$ and $30^{\circ}$ of knee angles than $0^{\circ}$ and $15^{\circ}$ of knee flexion (p<0.05). The median frequency of the TA, PL, FDL and GC were significantly lower at $45^{\circ}$ and $30^{\circ}$ of knee angles than $0^{\circ}$ and $15^{\circ}$ of knee on the stable ground (p<0.05). On the balance ball, also the median frequency of the TA, PL, FDL and GC were significantly lower at $45^{\circ}$ and $30^{\circ}$ of knee angles than $0^{\circ}$ and $15^{\circ}$ of knee flexion (p<0.05). The iEMG of the TA, PL, FDL and GC were significantly higher on the balance ball at $0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of knee angles compared with stable ground. The median frequency of the TA, PL, FDL and GC were significantly lower on the balance ball at $0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of knee angles compared with stable ground. These results indicate that the ground conditions and angles of the knee joint involved to muscular activities and fatigue of ankles muscles, may performed at first on stable ground and then balance ball in order to $0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of knee flexion.

  • PDF

Effects for Running Shoes with Resilience of Midsole on Biomechanical Properties (미드솔의 반발탄성이 러닝화의 생체역학적 특성에 미치는 영향)

  • Yoo, Chan-Il;Won, Yonggwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the effect for running shoes with resilience of midsole on biomechanical properties. Methods : 10 healthy males who had no history of injury in the lower extremity with an average age of 26.5 year(SD=1.84), height of 172.22 cm(SD=4.44) and weight of 67.51 kg(SD=6.17) participated in this study. All subjects ran on the treadmill wearing three different running shoes. Foot pressure data was collected using Pedar-X system(Novel Gmbh, Germany) operating at 100 Hz. Surface EMG signals for biceps femoris, rectus femoris, vastus lateralis, medial lateralis, tibialis anterior, medial gastrocnemius, soleus and peroneus longus were acquired at 1000 Hz using Bignoli 8 System(Delsys Inc., USA). To normalize the difference of the magnitude of muscle contractions, it was expressed as a percentage relative to the maximum voluntary contraction (MVC). The impact resilience of the midsole data was collected using Fastcam SA5 system(Photron Inc., USA). Collected data was analyzed using One-way ANOVA in order to investigate the effects of each running shoes. Results : TPU midsole was significantly wider in contact area than EVA, TPE midsole in midfoot and higher in EMG activity than EVA midsole at biceps femoris. TPE midsole was significantly wider in contact area than EVA midsole in rearfoot and higher in peak pressure than EVA midsole in forefoot. EVA midsole was significantly higher in EMG activity than TPU midsole at tibia anterior. In medial resilience of midsoles, TPE midsole was significantly higher than EVA, TPU midsole. Conclusion : TPU midsole can reduce the load on the midfoot effectively and activate tibialis anterior, biceps femoris to give help to running.

Comparison of the Foot Muscle EMG and Medial Longitudinal Arch Angle During Short Foot Exercises at Different Ankle Position

  • Yoon, Hyeo-bin;Kim, Ji-hyun;Park, Joo-hee;Jeon, Hye-seon
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.46-53
    • /
    • 2017
  • Background: The MLA is supported by both the abductor hallucis (ABH) and the extrinsic muscles. Insufficient muscular support may lower the MLA when the body's weight is applied to the foot. The short foot exercise (SFE) is effective in increasing the height of the MLA for people with flat feet. Most of the research related to the SFE has simply evaluated the efficiency of the exercise using enhanced ABH electromyography (EMG) activation. Since the tibialis anterior (TA), peroneus longus (PER), and ABH are all involved in supporting the MLA, a new experiment design examining the EMG of the selected muscles during SFE should be applied to clarify its effect. Objects: Therefore, this study aimed to clarify the effect of the SFE in different ankle position on the MLA angle and the activation of both the intrinsic and extrinsic muscles and to determine the optimal position. Methods: 20 healthy subjects and 12 subjects with flat feet were recruited from Yonsei University. The surface EMG and camera were used to collect muscle activation amplitude of TA, PER, and ABH and to capture the image of MLA angle during SFE. The subjects performed the SFE while sitting in three different ankle positions-neutral (N), dorsiflexion (DF) at 30 degrees, and plantar flexion (PF) at 30 degrees. Results: ABH EMG amplitudes were significantly greater in N and DF than in PF (p<.05). Muscle activation ratio of TA to ABH was the lowest in PF (p<.05). MLA angle in both groups significantly decreased in PF (p<.01). The TA and ABH was activated at the highest level in DF. However, in PF, subjects significantly activated the ABH and PER with relatively low activation of TA. Conclusion: Therefore, researchers need to discuss which SFE condition most effectively use the arch support muscle for flat foot.

Effect of kinesio taping on ankle strength, movement and function in patients with common peroneal nerve paralysis (키네지오 테이핑이 온종아리신경 마비를 가진 환자의 발목관절의 근력, 움직임 및 기능에 미치는 영향)

  • Park, Si Eun;Cho, Kyun-Hee;Park, Shin Jun
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2020
  • The effect of kinesio taping in patients with common peroneal nerve paralysis (PNP) have not been investigated. This purpose of this study was to evaluate the effects of kinesio taping on patients with common PNP. Ten subjects who had common PNP were included in this study. Kinesio taping was applied to the ankle joint (direction of dorsiflexion and eversion). The measurements were by manual muscle test (MMT; tibialis anterior, peroneus longus), active ROM (ankle dorsiflexion, eversion), pain (visual analogue scale (VAS), pressure pain threshold (PPT)), and balance (one leg standing). Subjects were assessed at baseline and 8 weeks of intervention. In the results, all subjects showed improvements in MMT, active ROM, Pain and balance at the 8-week. These findings are considered to be effective in applying kinesio taping on ankle joint in common PNP patients.

Effects of Calcaneus Fixation Taping on Quadriceps Angle and Lower Limb Muscles During Stairway Gait of a Patient with Patellofemoral Pain (무릎넙다리통증증후군 환자의 계단보행 시 발뒤꿈치뼈 교정 테이핑이 슬개대퇴각과 하지근육에 미치는 영향)

  • Oh, Kang-O;Lee, Sang-Yeol
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.311-319
    • /
    • 2019
  • Purpose: This study was conducted to determine the structural change in knees caused by quadriceps angle and the muscle activity in lower limbs. Indirect intervention was provided by using taping for stability in the ankle joints, which affected patellofemoral pain. Methods: The subjects in this study were 20 patients with patellofemoral pain who visited ${\bigcirc}{\bigcirc}{\bigcirc} $ Hospital in Busan. The visual analogue scale measured the dynamic quadriceps angle and the degree of pain felt by the patients while walking down stairs, which was a known factor of patellofemoral pain. In addition, muscle activities in the rectus femoris, vastus lateralis, vastus medialis, tibialis anterior, peroneus longus, and biceps femoris, which affect the knees and ankles, were measured using surface electromyography. The muscle activities were converted into %RVC for this study. The data obtained in this study were analyzed with the Wilcoxon signed-rank test using the SPSS Ver. 25.0 statistical program. The significance level ${\alpha}$ was 0.05. Results: The study results showed that the pain and dynamic quadriceps angle were significantly reduced statistically when applying the calcaneus fixation taping (p<0.05). Muscle activity in the lower limbs was significantly decreased in the vastus medialis, vastus lateralis, and tibialis anterior (p<0.05). Conclusion: The summary of the study results verified that the calcaneus fixation taping reduced the pain and dynamic quadriceps angle by providing stability in the ankle joints. It also produced efficient movement due to the difference in lower-limb muscle activity.

The Effects of Direction Changes on the Muscular Activity of the Lower Extremities During Seated Reaching Exercises

  • Kim, Jwa-Jun;Kim, Dae-Kyung;Kim, Jae-Yong;Shin, Jae-Wook;Park, Se-Yeon
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Purpose: Although multi-directional reaching exercises are commonly used clinically, the effects of specific movement directions on the muscle systems of the lower extremities have not been explored. We therefore investigated lower extremity muscle activity during reaching exercises with different sagittal and horizontal plane movements. Methods: The surface electromyography responses of the bilateral rectus femoris, tibialis anterior, peroneus longus, and gastrocnemius muscles were measured during reaching exercises in three directions in the horizontal plane (neutral, $45^{\circ}$ horizontal shoulder adduction, and $45^{\circ}$ abduction) and three directions in the sagittal plane (neutral, $120^{\circ}$ flexion, and $60^{\circ}$ flexion). A total of 20 healthy, physically active participants completed six sets of reaching exercises. Two-way repeated ANOVA was performed: body side (ipsilateral and contralateral) was set as the intra-subject factor and direction of reach as the inter-subject factor. Results: Reaching at $45^{\circ}$ horizontal shoulder adduction significantly increased the activity of the contralateral rectus femoris and gastrocnemius muscles, while $45^{\circ}$ horizontal shoulder abduction activated the ipsilateral rectus femoris and gastrocnemius muscles. The rectus femoris activity was significantly higher with reaching at a $120^{\circ}$ shoulder flexion compared to the other conditions. The gastrocnemius activity decreased significantly as the shoulder elevation angle increased from $60^{\circ}$ to $120^{\circ}$. Conclusion: Our results suggest that multi-directional reaching stimulates the lower extremity muscles depending on the movement direction. The muscles acting on two different joints responded to the changes in reaching direction, whereas the muscles acting on one joint were not activated with changes in reaching direction.