• 제목/요약/키워드: Permutation Feature Importance

검색결과 7건 처리시간 0.019초

소프트웨어-정의 네트워크에서 CNN 모델을 이용한 DDoS 공격 탐지 기술 (A DDoS Attack Detection Technique through CNN Model in Software Define Network)

  • 고광만
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.605-610
    • /
    • 2020
  • 소프트웨어 정의 네트워크가 확장성, 유연성, 네트워크상 프로그래밍이 가능한 특징으로 네트워크 관리에서 표준으로 자리잡아 가고 있지만 많은 장점에도 불구하고 하나의 컨트롤러에 대한 사이버 공격이 전체 네트워크를 영향을 주는 문제점을 가지고 있다. 특히, 컨트롤러에 대한 DDoS 공격이 대표적인 사례로서 다양한 공격 탐지 기술에 대한 연구가 진행되고 있다. 본 논문에서는 최초로 84개 DDoS 공격 Feature 데이터셋을 Kaggle에서 획득한 후 Permutation Feature Importance 알고리즘을 이용하여 상위 20의 중요도를 갖는 Feature를 선택하여 딥 러닝 기반의 CNN 모델에서 학습과 검증을 수행하였다. 이를 통해, 최적의 공격 탐지율을 갖는 상위 13개의 DDoS Feature 선택이 DDoS 공격 탐지율 96%을 유지하면서 적정한 공격 탐지 시간, 정확성 등에서 매우 우수한 결과를 제시하였다.

운영 데이터를 활용한 제3자 물류 환경에서의 배송 트럭 무게 예측 (Truck Weight Estimation using Operational Statistics at 3rd Party Logistics Environment)

  • 이유진;최경민;김송은;박경수;정승환
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.127-133
    • /
    • 2022
  • Many manufacturers applying third party logistics (3PLs) have some challenges to increase their logistics efficiency. This study introduces an effort to estimate the weight of the delivery trucks provided by 3PL providers, which allows the manufacturer to package and load products in trailers in advance to reduce delivery time. The accuracy of the weigh estimation is more important due to the total weight regulation. This study uses not only the data from the company but also many general prediction variables such as weather, oil prices and population of destinations. In addition, operational statistics variables are developed to indicate the availabilities of the trucks in a specific weight category for each 3PL provider. The prediction model using XGBoost regressor and permutation feature importance method provides highly acceptable performance with MAPE of 2.785% and shows the effectiveness of the developed operational statistics variables.

인적요인을 고려한 머신러닝 활용 산림화재 예측 (Predicting Forest Fires Using Machine Learning Considering Human Factors)

  • 장진명;김주찬;김화중;김광태
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.109-126
    • /
    • 2023
  • 대형 산림화재를 예방하기 위해 산림화재의 조기발견은 매우 중요하다. 조기발견을 위한 하나의 방안으로 산림화재 발생 예측이 고려되고 있으며 다양한 관련 연구가 진행되었다. 그러나 대다수의 선행연구가 산림화재의 주요 발화 원인 중의 하나인 인적요인을 고려하지 않고 기상요인과 지리적 요인만을 주로 다루고 있다. 따라서 본 연구는 기상 및 지리적 요인뿐만 아니라 인적요인을 고려한 산림화재 예측모형을 개발하기 위해 2003년부터 2020년까지의 강원도 산림화재 데이터를 활용하여 로지스틱 회귀모형과 다양한 머신러닝 기법 기반의 예측모형을 개발하고 성능을 비교분석하였다. 성능분석 결과, 머신러닝 기법인 랜덤 포레스트(AUC=0.920)와 XG Boost 모형(AUC=0.925)이 가장 우수한 성능을 나타냈다. 운영시사점을 도출하기 위해 순열특성중요도 분석을 활용하여 요인들의 상대적 중요도를 분석하였으며, 기상요인이 인적요인보다 높은 영향도를 나타냈지만 다양한 인적요인도 유효한 것으로 확인되었다.

차원 축소 진동 신호를 이용한 신경망 기반 선박 엔진 고장진단에 관한 연구 (A study on fault diagnosis of marine engine using a neural network with dimension-reduced vibration signals)

  • 심기찬;이강수;변성훈
    • 한국음향학회지
    • /
    • 제41권5호
    • /
    • pp.492-499
    • /
    • 2022
  • 본 연구에서는 진동 신호의 차원 감소가 선박 엔진의 고장진단에 미치는 영향을 실험적으로 분석한 결과를 제시한다. 주성분 분석을 이용하여 513차원의 진동 신호를 1 ~ 15차원의 저차원 신호로 변환하여 차원 변화에 따른 고장진단 정확도의 변화를 관찰하였다. 실제 규모의 선박용 발전기 디젤 엔진에서 측정된 진동 신호를 사용하고, integrated gradients와 feature permutation 기법의 두 가지 변수 중요도 분석 알고리즘을 사용하여 차원 축소 신호의 기여도를 정량적으로 평가하였다. 실험 데이터 분석 결과, 사용하는 차원의 수가 증가할수록 결함 진단의 정확도가 향상되는 것으로 나타났다. 차원이 10 이상에 다다르면 거의 모든 고장상태가 정확하게 분류되었으며, 이는 고장진단 정확도를 저하시키지 않으면서도 진동 신호의 차원수를 크게 줄일 수 있음을 보여준다. 변수 중요도 분석에서도 차원 축소 주성분이 기존 통계적 특성보다 더 높은 기여도를 보였으며, 차원 축소된 진동 스펙트럼이 고장진단에 효과적으로 사용될 수 있음을 확인하였다.

에이다 부스트를 활용한 건설현장 추락재해의 강도 예측과 영향요인 분석 (Analysis of Occupational Injury and Feature Importance of Fall Accidents on the Construction Sites using Adaboost)

  • 최재현;류한국
    • 대한건축학회논문집:구조계
    • /
    • 제35권11호
    • /
    • pp.155-162
    • /
    • 2019
  • The construction industry is the highest safety accident causing industry as 28.55% portion of all industries' accidents in Korea. In particular, falling is the highest accidents type composed of 60.16% among the construction field accidents. Therefore, we analyzed the factors of major disaster affecting the fall accident and then derived feature importances by considering various variables. We used data collected from Korea Occupational Safety & Health Agency (KOSHA) for learning and predicting in the proposed model. We have an effort to predict the degree of occupational fall accidents by using the machine learning model, i.e., Adaboost, short for Adaptive Boosting. Adaboost is a machine learning meta-algorithm which can be used in conjunction with many other types of learning algorithms to improve performance. Decision trees were combined with AdaBoost in this model to predict and classify the degree of occupational fall accidents. HyOperpt was also used to optimize hyperparameters and to combine k-fold cross validation by hierarchy. We extracted and analyzed feature importances and affecting fall disaster by permutation technique. In this study, we verified the degree of fall accidents with predictive accuracy. The machine learning model was also confirmed to be applicable to the safety accident analysis in construction site. In the future, if the safety accident data is accumulated automatically in the network system using IoT(Internet of things) technology in real time in the construction site, it will be possible to analyze the factors and types of accidents according to the site conditions from the real time data.

열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석 (Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters)

  • 김지형;장아름;박민재;주영규
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Machine learning-based analysis and prediction model on the strengthening mechanism of biopolymer-based soil treatment

  • Haejin Lee;Jaemin Lee;Seunghwa Ryu;Ilhan Chang
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.381-390
    • /
    • 2024
  • The introduction of bio-based materials has been recommended in the geotechnical engineering field to reduce environmental pollutants such as heavy metals and greenhouse gases. However, bio-treated soil methods face limitations in field application due to short research periods and insufficient verification of engineering performance, especially when compared to conventional materials like cement. Therefore, this study aimed to develop a machine learning model for predicting the unconfined compressive strength, a representative soil property, of biopolymer-based soil treatment (BPST). Four machine learning algorithms were compared to determine a suitable model, including linear regression (LR), support vector regression (SVR), random forest (RF), and neural network (NN). Except for LR, the SVR, RF, and NN algorithms exhibited high predictive performance with an R2 value of 0.98 or higher. The permutation feature importance technique was used to identify the main factors affecting the strength enhancement of BPST. The results indicated that the unconfined compressive strength of BPST is affected by mean particle size, followed by biopolymer content and water content. With a reliable prediction model, the proposed model can present guidelines prior to laboratory testing and field application, thereby saving a significant amount of time and money.