• Title/Summary/Keyword: Permanent current

Search Result 1,024, Processing Time 0.029 seconds

Starting Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 직립기동 영구자석 동기전동기의 기동특성 해석)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.592-600
    • /
    • 2001
  • This Paper presents the transient analysis of the single-phase line-start permanent magnet synchronous motor. To analyse the starting characteristics, the dynamic equation which is combined electric dynamic equations with mechanical dynamic equation is used. The electric dynamics are derived from the d-q axis voltages of stator and rotor respectively. Especially, symmetrical components transformation is used to consider unbalanced magnetic field which is produced by single-phase input. Non-linear d-q axis inductances according to current amplitude and current phase angle are calculated by Finite Element Method and applied to lumped parameter circuit. The analysis methods are validated by comparing simulated and experimental results.

  • PDF

Inductance Measurement of Interior Permanent Magnet Synchronous Motor in Stationary Frame of Reference

  • Lee, Geun-Ho;Choi, Woong-chul;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • An inductance measurement method for interior permanent magnet synchronous machine (IPMSM) is proposed in this paper. In this method, the motor is measured at standstill condition, and only a 3-phase voltage source, an oscilloscope and a DC voltage source are required. Depending on the deductive dq-axis voltage equations in the stationary frame of reference, the dq-axis inductances at different current magnitude and vector angle can be calculated by the measured 3-phase voltages and currents. And hence, the saturation and cross-magnetizing effect of the inductances are measurable. This paper introduces the principle equations, experiment setup, data processing, and results comparison on the concentrated-winding and distributed-winding IPMSMs.

A Comparative Analysis of Test Methods of Measuring d- and q-Axes Inductances for Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 측정법 비교 분석)

  • Kim, Seung-Joo;Kim, Cherl-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.923-928
    • /
    • 2009
  • The performance analysis and robust control of the interior permanent magnet synchronous motor(IPMSM) greatly depend on accurate value of its parameters. To achieve the high performance of torque control, it is necessary to consider exact inductance values because the inductances are nonlinear parameters of operating the IPMSM. Therefore many different methods have been performed for analysis of the methodology for the exact measurement of synchronous inductances. None of them is considered standard, and accuracy levels of all these methods are also not consistent. Among these experimental methods, the DC current decay test and the vector current control test are ideal for a laboratory environment. In this paper, these two test methods are compared by applying inductances to the IPMSM. The paper analyzes the measured inductances of the two methods and their differences with inductances obtained from the finite element method(FEM).

Control Based Reduction of Detent Force for Permanent Magnet Linear Synchronous Motor

  • Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.172-174
    • /
    • 2008
  • The detent force of the permanent magnet linear synchronous motor (PMLSM) is caused by the interaction between the permanent magnet and the iron core of the mover without input current. It is a function of the mover position relative to the stator. This paper proposes a control based method to reduce the detent force for the PMLSM. This detent force that can be predicted by finite element method (FEM) is compensated by injecting the instantaneous current using the field oriented control (FOC) method. Both the simulated and experimental results are reported to validate the effectiveness of this proposed method.

  • PDF

A study on Eddy current Magnetic Repulsion System Using Permanent Magnets (영구자석을 이용한 와전류 자기반발식 부상장치에 관한 연구)

  • Sung, H.K.;Jho, J.M.;Kim, B.S.;Cho, H.J.;Kim, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1613-1615
    • /
    • 2005
  • Maglev equipped with permanent magnets on the moving part can be levitated by the magnetic repulsion between Halbach array and conducting plate when this vehicle is running. This paper deals with the fundamental principles of the eddy-current magnetic repulsion system and the force characteristics to the change of the permanent magnet array and conduction bar.

  • PDF

Analysis and Novel Predictive Control of Current for Permanent Magnet Linear Synchronous Motor using SVPWM (SVPWM을 이용한 PMLSM의 전류 제어 분석과 새로운 예측 전류 제어)

  • Sun, Jung-Won;Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2631-2633
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMLSM(permanent magnet linear synchronous motor). The main objectives of the current controllers are that the measured stator current is tracked the command current value accurately and the transient interval is shorten as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that take to apply the voltage to motor. A new control strategy is the scheme that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

A Numerical simulation for the circulation of sea water in the Southern Coastal Waters in Korea (한국 남해안에서 2차원 해수순환모델)

  • KWOUN Chul Hui;CHO Kyu Dae;KIM Dong Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.4
    • /
    • pp.27-40
    • /
    • 2002
  • The circulation of sea water was simulated by two dimensional tide model using the main four tidal components and permanent current driven by inflow/outflow across open boundaries. According to the residt of tide model, the maximum speed of eastward flow on the Cheju Strait is twice higher than that of westward flow. According to the result of permanent current, the flow of permanent current showing semi-circle pattern in the southern part of Kojedo was due to variation of topography. According to the result of circulation model in the Cheju Strait, eastward flow entering in the southern waters from the Yellow Sea of Korea were dominant, but outflows westward were weak. These results suggest that it was difficult to move for suspended particulate matter into the Yellow sea from the southern waters through Cheju Strait.

  • PDF

Sliding Mode Controller Design Using Virtual State and State Decoupling for IPM Motor (가상 상태와 상태 디커플링을 이용한 IPM전동기용 슬라이딩 모드 제어기의 설계)

  • Kim, Min-Chan;Park, Seung-Kyu;Yoon, Seong-Sik;Kwak, Gun-Pyong;Park, Young-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.514-521
    • /
    • 2009
  • The current control for Interior-mounted Permanent Magnet Motor(IPM Motor) is more complicate than Surface-mounted Permanent magnet Motor(SPM Motor) because of its torque characteristic depending on the reluctance. For high performance torque control, it requirs state decoupling between d-axis current and q-axis current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variation and each current can be regulated independently. This paper proposes a novel approach for fully decoupling the states cross-coupling using sliding mode control with virtual state for IPM Motor. As a result, in spite of the parameter uncertainty and disturbance, the proposed sliding surface can have the dynamics of nominal system controlled by PI controller.

PM Magnetization Characteristics Analysis of a Post-Assembly Line Start Permanent Magnet Motor using coupled Preisach Modeling and Finite Element Method (프라이자흐 모델링과 유한요소법을 이용한 라인 스타트 영구자석 전동기의 영구자석 자화 특성 분석)

  • Rha, Young-Gak;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.469-475
    • /
    • 2014
  • This paper deals with the characteristics evaluations of PM magnetization using stator coil in a Post-Assembly Line Start Permanent Magnet Motor (LSPMM) using a coupled Finite Element Method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics analysis relative to magnetizing direction and quantity of permanent magnets due to the eddy current occurring in the rotor bar during magnetization of Nd-Fe-B.

Design of the H Current Controller Based on the PSO Algorithm for Reducing the Current Ripple Caused by the Saliencies of SPMSM (SPMSM 인덕턴스 돌극성에 의한 전류리플 저감을 위한 PSO 알고리즘 기반의 H 전류 제어기 설계)

  • Lee, Kwan-Hyung;Young, Jeon-Chan;Lim, Dong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1425-1435
    • /
    • 2013
  • The useful method for determining parameters of weighting functions used to design the $H_{\infty}$ current controller for attenuating the current ripple due to saliencies which SPMSM(Surface Permanent Magnet Synchronous Motor) also incorporates is described. To analyze the effect, the current ripple due to the structural and the saturation saliencies, the SPMSM model with nonlinear inductance function depending on the two independent variables, rotor position and stator current is simulated. After analysis, parameters of the weighting functions for $H_{\infty}$ current controller is selected to satisfy the robust stability, robust performance and specific performance in time and frequency domain by using the PSO(Particle Swarm Optimization) algorithm in the linear SPMSM model. Especially, the robust performance is proved that the selected weighting functions play a role in reducing the current ripple caused by the saliencies of SPMSM at the desired frequency range by the simple experiment.