• 제목/요약/키워드: Permanent Magnet Wheel

검색결과 65건 처리시간 0.026초

영구자석 바퀴를 이용한 이동 로봇의 조향 시스템 연구 (A Study On Steering System for Mobile Robot with Permanent Magnet Wheels)

  • 김진각;이화조;한승철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, steering systems for mobile robot with permanent magnet wheels are discussed. The mobile robot with permanent magnet wheels can have three different types of steering and driving configurations; two-wheels, three-wheels, four-wheels. By a Two-WD(Wheel Driving) system, driving and steering characteristics are controlled by ratio of each wheel speeds. Three-WD system is steered by a front wheel and driven by rear wheels. Four-WD system has better stability than two wheel system. Usually the permanent magnet wheel has nearly none slip. Thus turning radius of the mobile robot with three-WD and four-WD System will be increased and the steering and driving system will be complicated. To solve this problem, two magnet wheels with two dummy wheels are used in this study. fuming radius of the developed mobile robot is small and the structure of the robot is simple. It is possible to move forward, backward, to turn left and right, and to rotate freely with two-WD. This study proved that two-WD system is very suitable fur the mobile robot with permanent magnet wheels.

  • PDF

Design and Experimental Implementation of Easily Detachable Permanent Magnet Reluctance Wheel for Wall-Climbing Mobile Robot

  • Kim, Jin-Ho;Park, Se-Myung;Kim, Je-Hoon;Lee, Jae-Yong
    • Journal of Magnetics
    • /
    • 제15권3호
    • /
    • pp.128-131
    • /
    • 2010
  • In this paper, we propose a new design of the permanent magnet reluctance wheel which will make it possible to attach the robot to a vertical plane and move it. In the newly suggested design, a permanent magnet is utilized to enhance the adhesive force during attachment, and an electromagnet is produced to weaken the magnetic field of the permanent magnet and reduce the adhesive force for easier detachment of wheels from steel plates. To characterize the performance of this new wheel design, a 3-D finite element analysis is executed using a commercial FE program. The results show that the adhesive force is reduced effectively by the electromagnet which flows in the reverse direction of the magnetic loop of the permanent magnet when the current is supplied to the coil.

부분 자기 차폐된 마그네트 휠의 선형구동기로의 응용 (Linear Actuator using Magnetic Shield of Rotating Magnet Wheel)

  • 심기본;박준규;이상헌;정광석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.923-925
    • /
    • 2008
  • As known generally, when permanent magnets whose poles are upward and downward in order, arranged into the circumferential direction rotate under the conducting plate, the rotating force acts on the plate as well as the repulsive force. If the magnetic field by the magnet wheel(the above rotating permanent magnets) is partially shielded, the magnet wheel over open region can be a linear induction motor. The distinct feature from induction motor is that the traveling magnet field is produced by the moving permanent magnet instead of ac current. Furthermore, a variation of the open region changes the direction of the thrust force. In this paper, we introduce a concept of the linear actuator using the magnet wheel. Under the above shielding condition, a few simulation results and its verification from a simple test setup are described.

  • PDF

이동로봇용 영구자석바퀴 착탈장치 개발 (Development of Detachable System of Permanent Magnet Wheel for Mobile Robot)

  • 이화조;주해호;한승철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.635-638
    • /
    • 2000
  • It is necessary to work on a vertical plane of workpiece in order to produce a large structure like a ship. These works can be automated by using the robot with permanent magnet wheels. We developed the permanent magnet wheel which can be used by a mobile robot and easily detached. We enhanced an adhesive power by restricting the occurrence direction of magnetic flow. And we also developed a method which weakens adhesive magnetic force by changing magnetic flow with metal pins. We used the load cell and the gaussmeter to measure the characteristics of the adhesive force and magnetic force. We obtained the result that the adhesive power is reduced to 1/3 of normal state by using 4 inducing pins.

  • PDF

자력선 유도를 이용한 벽면이동로봇용 영구자석바퀴의 탈착에 관한 연구 (A Study on a Detachment of a Permanent Magnet Wheel for a Wall-Climbing Mobile Robot using Magnetic Inducement)

  • 한승철;이화조
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.143-149
    • /
    • 2002
  • Robot are necessary to automate the work on a vertical plane of work piece to produce a large structure like a ship, so that a permanent magnet wheel has been attempted to be used for a mobile robot. Its adhesive power was enhanced by restricting the occurrence direction of magnetic flow. Furthermore a method which weakened the adhesive force was developed for easy detachement of the wheel by changing magnetic flow with metal pin. To measure the characteristics of the adhesive and detaching farces, a load call and a gaussmeter were used. The result showed that the adhesive power was reduced to 1/3 of normal state by using 4 inducing pins.

크리깅 기법을 이용한 휠인 영구자석 동기전동기의 최적 설계 (Optimal Design of an In-Wheel Permanent Magnet Synchronous Motor Using a Design of Experiment and Kriging Model)

  • 장은영;황규윤;류세현;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.852-853
    • /
    • 2008
  • This paper proposes an optimal design method for the shape optimization of the permanent magnets (PM) of an in-wheel permanent magnet synchronous motor (PMSM) to reduce the cogging torque considering a total harmonic distortion (THD) and a root mean square (RMS) value of back-EMF. In this method, the Kriging model based on a design of experiment (DOE) is applied to interpolate the objective function in the spaces of design parameters. The optimal design method for the PM of an in-wheel PMSM has to consider multi-variable and multi-objective functions. The developed design method is applied to the optimization for the PM of an in-wheel PMSM.

  • PDF

동전기력에 기초한 자기 부상 평면 운송 시스템의 부상 메커니즘에 관한 연구 (A Study on the Levitation Mechanism Based on the Electrodynamic Force for a Maglev Planar Transportation System)

  • 박준혁;백윤수
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1025-1033
    • /
    • 2006
  • This paper describes the levitation mechanism using magnetic wheel for a maglev planar transportation system. Rotation of the magnetic wheel where the permanent magnet array is embedded produces the time varying traveling magnetic flux density and the generated magnetic flux density creates the induced levitation force and drag force with the conductor. Because the net drag force is zero, magnetic wheel can only generate the levitation force. Thus, it always guarantees the stability in levitation direction and it does not disturb other directional motion. In this paper, levitation principle of the magnetic wheel is analyzed using distributed field approach and dynamic characteristics of the levitation in the magnetic wheel system are estimated. The feasibility of the proposed levitation mechanism is verified through the several experimental works.

자기 차폐를 이용한 전방향 자기차륜 (Omni-Directional Magnet Wheel using Magnetic Shield)

  • 심기본;이상헌;정광석
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.72-80
    • /
    • 2009
  • When the magnet wheel rotates over a conducting plate, it generates the traction torque as well as the repulsive force on the conducting plate. Partially-cut traction torque results in the linear force into the tangential direction. To cut the traction torque, the concept of magnetic shield is introduced. The direction change of the linear force is realized varying the shielded area of magnetic field. That is, the tangential direction of non-shielded open area becomes the direction of the linear thrust force. Specially a shape of permanent magnets composing the magnet wheel leads to various pattern of magnetic forces. So, to enlarge the resulting force density and compensate its servo property a few simulations are performed under various conditions such as repeated pattern, pole number, radial width of permanent magnets, including shape of open area. The theoretical model of the magnet wheel is derived using air-gap field analysis of linear induction motor, compared with test result and the sensitivity analysis for its parameter change is performed using common tool; MAXWELL. Using two-axial wheel set-up, the tracking motion is tested for a copper plate with its normal motion constrained and its result is given. In conclusion, it is estimated that the magnet wheel using partial shield can be applied to a noncontact conveyance of the conducting plate.

벽면이동 로봇용 하이브리드 자석바퀴 3차원 유한요소해석 및 설계 (Design of Hybrid Magnet Wheels using 3D Finite Element Analysis for Wall-climbing Robot)

  • 한승철;이재용;김진호
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.88-92
    • /
    • 2010
  • We propose a new design of the hybrid-magnet wheel to make it possible for a mobile robot to be attached to the vertical plane and be in motion. In the new suggested design, a permanent magnet is utilized to enhance the adhesive force, while an electromagnet is adopted to reduce the magnetic field and the adhesive force for detaching easily. To analysis the performance of the robot, 3 dimensional finite element analysis is executed using commercial electromagnetic analysis program, Maxwell. The results show that the adhesive force is reduced effectively by the electromagnet in the new designed robot system.