• Title/Summary/Keyword: Permanent Magnet Pole Shape

Search Result 53, Processing Time 0.033 seconds

Optimal Design of a PMLSM with 9 Pole 10 Slot for Detent Force Reduction (9극 10슬롯 구조의 영구자석 선형 동기 전동기의 디텐트력 저감을 위한 최적설계)

  • Hwang, In-Sung;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.589-595
    • /
    • 2008
  • Detent force of a permanent magnet linear motor(PMLSM) consist of cogging and drag forces, and should be minimized for high precision control purpose applications. This paper shows that the cogging force can be reduced effectively by employing 9 pole 10 slot structure. The drag force is minimized by optimizing the total length and shape of the exterior teeth of armature core simultaneously by using($1+{\lambda}$) evolution strategy coupled with response surface method. After optimization, the optimized PMLSM is proven to reduce 95% and 92.6% of the cogging and total detent forces, respectively, and give 12% and 6.4% higher Back-emf and thrust force, respectively, compared with a conventional 12 pole 9 slot structure under the same condition. Additionally, Simulation results by the proposed optimum design are verified by the experiment results.

The study on the torque ripple and vibration characteristic of IPM motor according to rotor design (IPM motor의 회전자 구조설계에 따른 토크리플 및 진동 특성 연구)

  • Lee, Seung-Hoon;Kang, Gyu-Hong;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.38-40
    • /
    • 2008
  • This paper presents the torque ripple and vibration characteristic of interior type permanent magnet (IPM) motor according to rotor design. In the design methods, the optimal notchs are put on the rotor pole face, which have an effect on variation of permanent magnet (PM) shape or residual flux density of PM. Through the space harmonics field analysis, the positions of notch are found and the optimal shapes of notch are decided by using Finite Element Method (FEM). The validity of the proposed method is confirmed with experiments. Therefore, the vibration, starting current and efficiency of IPM is measured by experiment.

  • PDF

The study on the vibration characteristic of IPM motor according to the notch design (Notch 설계에 따른 매입형영구자석형 전동기의 진동특성 고찰)

  • Lee, Seung-Hoon;Ahn, Ho-Jin;Kang, Gyu-Hong;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.47-49
    • /
    • 2008
  • This paper presents the vibration characteristic of interior type permanent magnet (IPM) motor according to rotor design. In the design methods, the optimal notchs are put on the rotor pole face, which have an effect on variation of permanent magnet (PM) shape or residual flux density of PM. Through the space harmonics field analysis, the positions of notch are found and the optimal shapes of notch are decided by using Finite Element Method (FEM). The validity of the proposed method is confirmed with experiments. Therefore, the vibration, starting current and efficiency of IPM is measured by experiment.

  • PDF

A Novel Cogging Torque Reduction Method for Single-Phase Brushless DC Motor

  • Park, Young-Un;Cho, Ju-Hee;Rhyu, Se-Hyun;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • Single-phase, brushless DC (BLDC) motors have unequal air-gaps to eliminate the dead-point where the developed torque is zero. Unfortunately, these unequal air-gaps can deteriorate the motor characteristics in the cogging torque. This paper proposes a novel design for a single-phase BLDC motor with an asymmetric notch to solve this problem. In the design method, the asymmetric notches were placed on the stator pole face, which affects the change in permanent magnet shape or the residual flux density of the permanent magnet. Parametric analysis was performed to determine the optimal size and position of the asymmetric notch to reduce the cogging torque. Finite element analysis (FEA) was used to calculate the cogging torque. A more than 28% lower cogging torque compared to the initial model with no notch was achieved.

Effect of Tooth Shape and Unbalanced M.M.F on Static Thrust Force Characteristics of Linear Pulse Motor (리니어 펄스 모터에서 치 형상과 기자력 불평형이 정추력 특성에 미치는 영향)

  • Lee, Dong-Ju;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Seong-Jong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.131-137
    • /
    • 2000
  • 2 phase 8 pole HB-type(flat-type) Linear Pulse Motor can be used as the high precision position actuator because of its many advantages (simple control circuit, high stiffness characteristics, etc). Also, using the microstep drive, its noise and vibration can be reduced considerably and positional resolution may be increased further. But, $20^{\circ}$tapered tooth shape to reduce the normal force have an much effect on the static thrust force characteristics. And, because of hybrid-type LPM, interaction between the permanent magnet and the excitation current have an effect on the various characteristics of LPM. Hence, in this paper, the effect of tooth shape on static thrust force characteristics was analyzed using the air gap permeance by finite element method. For analyzing the effect of unbalance between the m.m.f of permanent magnet and the m.m.f of excitation current, unbalanced m.m.f coefficient $\sigma$ were introduced with the permenace matrix and switching matrix.

  • PDF

A Study on the SRM Torque Computation According to Different Stator Pole Shapes (스위치드 릴럭턴스 전동기의 스테이터 형상에 따른 토크량 계산에 관한 연구)

  • Jo, Hee;Lee, Jong-Woo;Kim, Kyeong-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.693-696
    • /
    • 2011
  • The SRM (Switched Reluctance Motor) is composed of silicon steel plates where the rotor structure is simple and laminated without coil winding or permanent magnet, making it mechanically robust and its maintenance and repair excellent. Applying SRM as traction motor for railway vehicle is given consideration because of its ruggedness capability in severe loading condition and its compact structure. Optimal design of SRM is needed to reduce torque ripple to apply SRM for railway traction drive because SRM has high torque ripple. In this paper, switched reluctance motor with three different stator pole shapes is taken for magnetic analysis using 3d finite element method to apply SRM as traction drive for railway vehicle. It is observed that the model 3 added Tooth Tang Depth and Slot Round to stator shape gives the improved inductance and torque characteristic.

  • PDF

Omni-Directional Magnet Wheel using Magnetic Shield (자기 차폐를 이용한 전방향 자기차륜)

  • Shim, Ki-Bon;Lee, Sang-Heon;Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.72-80
    • /
    • 2009
  • When the magnet wheel rotates over a conducting plate, it generates the traction torque as well as the repulsive force on the conducting plate. Partially-cut traction torque results in the linear force into the tangential direction. To cut the traction torque, the concept of magnetic shield is introduced. The direction change of the linear force is realized varying the shielded area of magnetic field. That is, the tangential direction of non-shielded open area becomes the direction of the linear thrust force. Specially a shape of permanent magnets composing the magnet wheel leads to various pattern of magnetic forces. So, to enlarge the resulting force density and compensate its servo property a few simulations are performed under various conditions such as repeated pattern, pole number, radial width of permanent magnets, including shape of open area. The theoretical model of the magnet wheel is derived using air-gap field analysis of linear induction motor, compared with test result and the sensitivity analysis for its parameter change is performed using common tool; MAXWELL. Using two-axial wheel set-up, the tracking motion is tested for a copper plate with its normal motion constrained and its result is given. In conclusion, it is estimated that the magnet wheel using partial shield can be applied to a noncontact conveyance of the conducting plate.

Characteristic Analysis of Permanent Magnet Type Step Motor with claw poles by using 3 dimensional Finite Element Method (3차원 유한요소법을 이용한 영구자석형(PM) Claw pole 스텝 모터의 특성 해석)

  • Lim Seung-Bin;KIM Tae-Heoung;Jung Dae-Sung;Lee Ju;Kwon Ho;Son Yeoung-Gyu;Kim Yun-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.749-751
    • /
    • 2004
  • This paper analyzed the characteristics of the claw pole PM step motor by using 3D FEM. In case of analysing this type of motor, 3 dimensional analysis is necessary for an accurate analysis due to the magnetizing component of the z-axis direction. As a main design variable, the magnetization, width and the effects of skewing was selected. The variation of the detent torque and the back EMF depending on the shape of the pole is also shown.

  • PDF

Design of a wind turbine generator with low cogging torque by using evolution strategy (진화론적 알고리즘을 이용한 코깅토크가 적은 풍력발전기의 설계)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Lee, Hee-Joon;Kim, Yong-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.755-760
    • /
    • 2016
  • The demand for independent generators using renewable energy has been increasing. Among those independent generators, small wind turbine generators have been actively developed. Permanent magnets are generally used for small wind turbine generators to realize a simple structure and small volume. On the other hand, cogging torque is included due to the structure of the permanent magnet synchronous machine, which can be the source of noise and vibration. The cogging torque can be varied by the shape of the permanent magnet and core, and it can be reduced using the appropriate design techniques. This paper proposes a design technique that can reduce the cogging torque by changing the shape of the permanent magnets for SPMSM (Surface Permanent Magnet Synchronous Motor), which is used widely for small wind turbine generators. Evolution Strategy, which is one of non-deterministic optimization techniques, was adopted to find the optimal shape of the permanent magnets that can reduce the cogging torque. The angle and outer diameter of permanent magnet were set as the design variable. A 300W class wind turbine generator, whose pole/slot combination was 8 poles/18 slots, was designed with the proposed design technique. The properties of the generator, including the cogging torque and output voltage, were calculated. The calculation results showed that the cogging torque of the optimized model was reduced compared to that of the initial model. The design technique proposed by this paper can be an effective measure to reduce the cogging torque.

Optimal Design of Magnetizing Fixture to Reduce Cogging Torque in Brushless DC Motors by Sequential RSM (순차적반응표면법을 이용한 착자요크 최적설계)

  • Hwang, Kyu-Yun;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.828-829
    • /
    • 2008
  • This paper proposes a new pole shaped magnetizing fixture with a non uniform air gap for sinusoidal magnetizing a ring type permanent magnet (PM) to reduce the cogging torque. To obtain more sinusoidal distributed magnetic flux density, the magnetizing fixture's pole shape is optimized by using the sequential response surface method (RSM). And the effects of each design parameter were investigated using the magnetic analysis combined a time stepping finite element method (FEM) with Preisach model. It has been shown, through numerical analysis the optimized modelgives near sinusoidal distributed air gap flux density and drastically reduced cogging torque.

  • PDF