• Title/Summary/Keyword: Permanent Current

Search Result 1,027, Processing Time 0.022 seconds

A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor (브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

Analysis and Case Study of Permanent Magnet Arrays for Eddy Current Brake Systems with a New Performance Index

  • Sainjargal, Surenkhorloo;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • In this paper, magnetic flux distributions of several permanent magnet arrays, including Halbach array, are analyzed and compared. Also, braking force characteristics on a moving solid conductor in the eddy current brake systems with such magnet arrays are analyzed. Then, a new performance index taking into account the maximum braking force and the volume of the magnet is introduced for the comparison and case study of permanent magnet arrays. By changing the lengths, magnetization directions and the height of the permanent magnet arrays, a higher braking force per volume of the magnet can be achieved.

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2012
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110kW class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnet design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

Eddy Current Loss Analysis of Slotless Double-sided Cored Type Permanent Magnet Generator by using Analytical Method (해석적 방법을 이용한 슬롯리스 양측식 코어드 타입 영구자석 발전기의 와전류 손실 해석)

  • Jang, Gang-Hyeon;Jung, Kyoung-Hun;Hong, Keyyong;Kim, Kyong-Hwan;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1639-1647
    • /
    • 2016
  • This paper deals with eddy current loss analysis of Slotless Double sided Cored type permanent magnet linear generator by using analytical method, space harmonic method. In order to calculate eddy current, this paper derives analytical solution by the Maxwell equation, magnetic vector potential, Faraday's law and a two-dimensional(2-D) cartesian coordinate system. First, we derived the armature reaction field distribution produced by armature wingding current. Second, by using derived armature reaction field solution, the analytical solution for eddy current density distribution are also obtained. Finally, the analytical solution for eddy current loss induced in permanent magnets(PMs) are derived by using equivalent, electrical resistance calculated from PMs volume and eddy current density distribution solution. The analytical result from space harmonic method are validated extensively by comparing with finite element method(FEM).

Characteristic Analysis of Permanent-Magnet Linear Eddy-Current Brake System According to Magnetization Pattern (자화패턴에 따른 영구자석 직선형 와전류 제동장치의 특성 해석)

  • 이성호;조한욱;장석명
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.427-433
    • /
    • 2003
  • Permanent magnet movers with three different magnetization patterns were applied to a linear eddy current braking system. By using a two-dimensional analytical technique, this paper deals with the comparison of the design guidelines, magnetic field, required magnet volume, and force capability for three types of linear brakes. The analytical results are also verified by finite element analyses.

Moving Mesh Technique for Dynamic Characteristics Analysis of Permanent Magnet Linear Synchronous (영구 자석형 선형 동기전동기의 동특성 해석을 위한 이동 메쉬 기법)

  • Woo, Kyung-Il;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • This paper describes a moving mesh technique for dynamic characteristics analysis of permanent magnet linear synchronous motor with the secondary aluminium sheet. The moving mesh technique applied to the linear induction motor can be used to analyze the linear synchronous motor with the rectangular permanent magnet. But in case of the permanent magnet with taper, the shape of the permanent magnet is presented. The time-stepped finite element method is used for the dynamic characteristics simulation of the permanent magnet linear synchronous motor, The results of application example(hysteresis current controlled inverter fed control) such as thrust, current and flux plots are shown.

  • PDF

Current-Sensorless Maximum Torque per Ampere Control for a Surface Mounted Permanent Magnet Synchronous Motor with Low-Resolution Position Sensor (저분해능 위치센서를 갖는 표면부착형 영구자석 동기전동기의 전류센서 없는 단위 전류 당 최대 토크 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.204-210
    • /
    • 2009
  • This paper proposes a novel current-sensorless maximum torque per ampere control for a surface mounted permanent magnet synchronous motor with low-resolution position sensor. A direct axis current is estimated from the mathematical model of the permanent magnet synchronous motor and the phase angle between direct and quadrature axis voltage commands is controlled to adjust the estimated direct axis current to zero, thus a maximum torque per ampere control can be achieved. The proposed method is suitable for low cost applications with slow dynamic response characteristics.

Eddy Current Loss Analysis in Radial Flux Type Synchronous Permanent Magnet Coupling using Space Harmonic Methods (공간고조파법을 이용한 반경방향 영구자석을 갖는 자기커플링의 와전류 손실 해석)

  • Min, Kyoung-Chul;Kang, Han-Bit;Park, Min-Gyu;Cho, Han-Wook;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1377-1383
    • /
    • 2014
  • This paper deals with eddy current loss of magnetic coupling with radial permanent magnet (PM) using analytical method such as a space harmonic method. Superposition of two kinds analysis model is used to analyze eddy current loss induced in inner PM and outer PM of magnetic coupling. When the eddy current is induced, the environmental temperature increases, and the permanent magnet(PM) characteristics are degraded because the performance of PM is greatly influenced by temperature rise. Hence, the calculation of eddy current loss becomes an important factor in the magnetic coupling. In order to analyze eddy current loss, first, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radial magnetized PM are obtained. And we obtain the analytical solutions for the eddy current density produced by permanent magnet. Lastly, analytical solutions for eddy current loss are derived by using equivalent, electrical resistance calculated from magnet volume and analytical solution for eddy current density. This analytical results are validated by comparing with the 2-D finite element analysis (FEA).

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Flux-Weakening control algorithm for an IPMSM drive reflecting the Characteristic Current Variations (특성 전류의 변화를 반영한 매입형 영구자석 동기전동기의 약계자 제어 알고리즘 개발)

  • JungHyeon Han;Jae Suk Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.426-431
    • /
    • 2024
  • This paper presents a flux-weakening control algorithm for Permanent Magnet Synchronous Motor (PMSM) drives that reflects the magnitude of the characteristic current. A stator flux linkage observer is utilized to calculate the varying ratio of permanent magnet(PM) flux linkage. The characteristic current magnitude is indirectly calculated using the ratio of the calculated PM flux linkage. The calculated PM flux linkage is used to determine the application of Maximum Torque Per Voltage (MTPV) control for the IPMSM(Interior Permanent Magnet Synchronous Motor) through a 3D Look-Up Table(LUT). The proposed flux-weakening control method is validated through simulations.