• Title/Summary/Keyword: Periodontal surgery

Search Result 564, Processing Time 0.035 seconds

A Histo-Pathological Study of Effect on Periodontal Regeneration with Bioabsorbable Membrane on The Grade II Furcation Defects in Beagle Dogs (성견 치근이개부 병소에서 흡수성 차폐막의 치주조직재생에 미치는 영향에 대한 조직병리학적 연구)

  • Kim, Jae-Kwang;Lim, Sung-Bin;Chung, Chin-Hyung;Lee, Chong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.161-172
    • /
    • 2002
  • The present study evaluated the effects of guided tissue regeneration using xenograft material(deproteinated bovine bone powder), with and without biodegradable membrane in beagle dogs. Contralateral fenestration defects (6 ${\times}$ 4mm) were created 4 mm apical to the buccal alveolar crest of maxillary premolar teeth in 5 beagle dogs. Deproteinated bovine bone powders were implanted into fenestration defect and one randomly covered biodegradable membrane (experimental group). Biodegradable membrane was used to provide GTR. Tissue blocks including defects with soft tissues which were harvested following four & eight weeks healing interval, prepared for histo-phathologic analysis. The results of this study were as follows. 1. In control group, at 4 weeks after surgery, new bony trabecular contacted with interstitial tissue and osteocytes like cell were arranged in new bony trabecule. Bony lamellation was not observed. 2. In control gruop, at 8 weeks after surgery, scar-like interstitial tissue was filled defect and bony trabecule form lamellation. New bony trabecular was contacted with interstitial tissue but defect was not filled yet. 3. In experimental group, at 4 weeks after surgery, new bony trabecular partially recovered around damaged bone. But new bony trabecular was observed as irregularity and lower density. 4. In experimental group, at 8 weeks after surgery, lamella bone trabecular developed around bone cavity and damaged tissue was replaced with dense interstitial tissue. In conclusion, new bone formation regenerated more in experimental than control groups and there was seen observe more regular bony trabecular in experimental than control groups at 4 weeks after surgery. In control group, at 8 weeks after surgery, the defects was filled with scar-like interstitial tissue but, in experimental group, the defects was connected with new bone. Therefore xenograft material had osteoconduction but could not fill the defects. We thought that the effective regeneration of periodontal tissue, could be achieved using GTR with biodegradable membrane.

Static tensional forces increase osteogenic gene expression in three-dimensional periodontal ligament cell culture

  • Ku, Seung-Jun;Chang, Young-Il;Chae, Chang-Hoon;Kim, Seong-Gon;Park, Young-Wook;Jung, Youn-Kwan;Choi, Je-Yong
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.427-432
    • /
    • 2009
  • Orthodontic tooth movement results from the combinational process of both bone resorption and formation in the compressive and tension sides, respectively. However, the genes responsible for new bone formation in tension sides have not been determined. In this study, we used DNA microarray and real-time RT-PCR to identify genes in human periodontal ligament (PDL) cells that undergo significant changes in expression in response to static tensional forces (2 or 12 hours). The genes found were alkaline phospatase (ALP), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and several collagen genes. Furthermore, an ELISA evaluating the expression of VEGF, type IV collagen and MMP-2 found levels significantly increased after 24 and 72 hours (P < 0.05). ALP activity was also increased after 24 hours (P < 0.05). Collectively, we found the genes up-regulated in our study by the static tensional force are related to osteogenic processes such as matrix synthesis and angiogenesis.

Periodontal tissue reaction to customized nano-hydroxyapatite block scaffold in one-wall intrabony defect: a histologic study in dogs

  • Lee, Jung-Seok;Park, Weon-Yeong;Cha, Jae-Kook;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.2
    • /
    • pp.50-58
    • /
    • 2012
  • Purpose: This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. Methods: A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral $4{\times}{\times}4{\times}5$ mm (buccolingual width${\times}$mesiodistal width${\times}$depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Results: Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. Conclusions: In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation.

Immediate effect of Nd:YAG laser monotherapy on subgingival periodontal pathogens: a pilot clinical study

  • McCawley, Thomas K.;McCawley, Mark N.;Rams, Thomas E.
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • Purpose: This pilot study assessed the immediate in vivo effect of high peak pulse power neodymium-doped yttrium aluminum garnet (Nd:YAG) laser monotherapy on selected red/orange complex periodontal pathogens in deep human periodontal pockets. Methods: Twelve adults with severe periodontitis were treated with the Laser-Assisted New Attachment Procedure (LANAP®) surgical protocol, wherein a free-running, digitally pulsed, Nd:YAG dental laser was used as the initial therapeutic step before mechanical root debridement. Using a flexible optical fiber in a handpiece, Nd:YAG laser energy, at a density of 196 J/cm2 and a high peak pulse power of 1,333 W/pulse, was directed parallel to untreated tooth root surfaces in sequential coronal-apical passes to clinical periodontal probing depths, for a total applied energy dose of approximately 8-12 joules per millimeter of periodontal probing depth at each periodontal site. Subgingival biofilm specimens were collected from each patient before and immediately after Nd:YAG laser monotherapy from periodontal pockets exhibiting ≥6 mm probing depths and bleeding on probing. Selected red/orange complex periodontal pathogens (Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia/nigrescens, Fusobacterium nucleatum, Parvimonas micra, and Campylobacter species) were quantified in the subgingival samples using established anaerobic culture techniques. Results: All immediate post-treatment subgingival biofilm specimens continued to yield microbial growth after Nd:YAG laser monotherapy. The mean levels of total cultivable red/orange complex periodontal pathogens per patient significantly decreased from 12.0% pretreatment to 4.9% (a 59.2% decrease) immediately after Nd:YAG laser monotherapy, with 3 (25%) patients rendered culture-negative for all evaluated red/orange complex periodontal pathogens. Conclusions: High peak pulse power Nd:YAG laser monotherapy, used as the initial step in the LANAP® surgical protocol on mature subgingival biofilms, immediately induced significant reductions of nearly 60% in the mean total cultivable red/orange complex periodontal pathogen proportions per patient prior to mechanical root instrumentation and the rest of the LANAP® surgical protocol.

The Effects of Bone Morphogenetic Protein-4 and Resorbable Membrane on the Regeneration of Periodontal Tissues (골형태형성단백질과 흡수성차폐막이 치주조직 재생에 미치는 영향)

  • Lim, Sang-Cheol;Kwon, Young-Hyuk;Lee, Man-Sup;Partk, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.757-779
    • /
    • 2000
  • The aim of our study is to achieve complete periodontal tissue regeneration by the application of BMP and resorbable membrane. Three beagle dogs aged over one and half years and weighed 14 to 16 kg were used in this study. Mandibular 1st, 2nd premolars were extracted bilaterally. Horizontal furcation defects were induced around 3rd, 4th premolars bilaterally. BMP-4 were applied in the right side with resorbable membranes and only resorbable membranes were applied in the left side respectively. Each animal was sacrificed at 2, 4, and 8weeks, after regenerative surgery. Specimens were prepared with Hematoxylin-Eosin stain and Goldner's modified Masson Trichrome stain for light microscopic evaluation. The results were as follows: 1. At 2 weeks after regenerative surgery, downgrowth of junctional epithelium was observed both in the membraneapplied site and BMP-4-and-membrane-applied site. 2. At 4 weeks after regenerative surgery, resorbable membranes were completely resolved, therefore would not prevent downgrowth of junctional epithelium. New bone formation, new cementum formation and Sharpey's fiber were observed in BMP-4-andmembrane-applied site. 3. At 8 weeks after regenerative surgery, downgrowth of junctional epithelium was observed in the membrane-applied site. But, new cementum formation was observed in the same site. The extensive regeneration of new bone, new cementum and remarkable formation of Shapey's fiber were showed in BMP-4-and-membrane-applied site. 4. Resorbable membranes were resolved via the cell-mediated processes. 5. Periodontal tissue regeneration were better achieved in the BMP-4-andmembrane-applied site than in the membrane-applied site. Within the above results, BMP-4 may have the strong capability to form the new bone and resorbable membrane may be able to prevent the bony ankylosis. However, resolution rate of resorbable membrane may not be enough to protect rapid epithelial downgrowth for ideal periodontal regeneration. In conclusion, I suggest BMP-4 may have the strong possibility to be utilized in the clinical periodontal treat-

  • PDF

A STUDY OF REGENERATION ENHANCEMENT OF DESTRUCTED PERIODONTAL TISSUE (파괴된 치주조직의 재생촉진에 관한 연구)

  • Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.407-417
    • /
    • 1995
  • In order to evaluate the effect of platelet-derived growth factor(PDGF-BB) and guided tissue regeneration(GTR) technique on the regeneration of destructed periodontal tissue,intentional through-and-through furcation defects(4mm in height) were made on both mandibular 2nd and 4th premolars of 8 adult male dogs(30-40lb). Experimental group 1 was composed of the premolars that were treated by only topical application of PDGF-BB with 0.05M acetic acid without any barrier membrane. Experimental group 2 was composed of the premolars that were treated by GTR with expanded polytetrafluoroethylene membrane(ePTFE : Gore-tex periodontal material, USA). Experimental group 3 was composed of the premolars that were treated by GTR with ePTFE after topical application of PDGFBE. Control group was composed of the premolars that were treated by coronally positioned flap operation only without use of PDGF-BB and ePTFE membrane. All ePTFE membranes were carefully removed 4 weeks after regenerative surgery, and all experimental animals were sacrificed 8 weeks after regenerative surgery. The light microscopic findings were as follows ; (1) In experimental group 1, rapid new bone formation along the-root surface with multiple ankylosis and root resorption by multinucleated giant cells, and dense connective tissue in the central portion of the furcation defects were observed. (2) In experimental group 2, it was observed that the furcation defects were filled with newly formed bone, Sharpey's fibers were embedded into new cementum on root dentin of furcation fornix area, but the central portion and the area under furcation fornix were still filled with dense connective tissue. (3) In experimental group 3, the furcation defects were regenerated with newly formed dense bone and regular periodontal ligament with Sharpey's fibers embedded into newly formed cementum and bone underneath fornix area. (4) In control group, unoccupied space, apical migration of epithelium, dense infiltration of inflammatory cells in subepithelial connective tissue in relation to heavy plaque accumulation, and root resorption by inflammatory reaction were shown, but any new cementum formation on resorbed dentin surface could not be observed. The present study demonstrated that the combined therapy of PDGF-BB and GTR could enhance the regeneration of destructed periodontal tissue.

  • PDF