• Title/Summary/Keyword: Periodontal ligament cells

Search Result 258, Processing Time 0.038 seconds

A COMPARATIVE STUDY OF PRESERVING ABILITY OF HUMAN PERIODONTAL LIGAMENT CELLS STORED IN DIFFERENT TEMPERATURED STORAGE MEDI (저장용액의 온도에 따른 치주인대세포의 생존율)

  • Jo, Jae-Hyun;Kim, Seong-Oh;Choi, Hyung-Jun;Lee, Jae-Ho;Son, Heung-Kyu;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • To compare the survival rate of periodontal ligament cells preserved in storage media with good availability at the time of an avulsion injury, periodontal ligament cells were incubated in ${\alpha}-MEM$ culture medium containing 10% FBS in condition of $37^{\circ}C$, 5% $CO_2$. These cells were then cultured in HBSS, ${\alpha}-MEM$, milk(S co., P. co.) and tap water at the temperature of 4, 25, $37^{\circ}C$ each in 60 min. The groups were measured by MTT assay. The results were as follows : 1. Among the storage media at $4^{\circ}C$, ${\alpha}-MEM$ and P-milk had the highest preserving ability of periodontal ligament cells, while that of HBSS S-milk and tap was low in order. 2. Among the storage media at $25^{\circ}C$, ${\alpha}-MEM$ had the highest preserving ability of periodontal ligament cells, while that of P-milk, HBSS, S-milk, tap water was low in order. 3. Among the storage media at $37^{\circ}C$, the preserving ability of periodontal ligament cells was very high in ${\alpha}-MEM$, P-milk, HBSS and S-milk, it's lowest in tap water. 4. The preserving ability of periodontal ligament cells in ${\alpha}-MEM$ was high at $4^{\circ}C$ and it's low in order of $25^{\circ}C$, $37^{\circ}C$, but in HBSS was high at $4^{\circ}C$ and it's low at $25^{\circ}C$, $37^{\circ}C$ 5. The preserving ability of periodontal ligament cells in S-milk and P-milk was high at $4^{\circ}C$, $25^{\circ}C$ and it s low at $37^{\circ}C$. In conclusion, HBSS is the storage medium of choice in an avulsion, but in this study it is preferable to choose milk at $4^{\circ}C$ for tooth since it is easy to get and affect cell viability.

  • PDF

Effects of substance P on mineralization markers and heme oxygenase-1 Expression in human immortalized periodontal ligament cells

  • Cho, You-Min;Suh, Chung-Hwan;Chun, Sang-Woo;Kim, Eun-Cheol;Kang, Kyung-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • Substance P (SP) is known to be expressed in the nerve fibers of dental pulp and periodontal tissues. It was recently reported that SP expression increased in response to orthodontic force. In the present study, we investigated the effect of SP on expression of mineralization markers and heme oxygenase-1 (HO-1) in human immortalized periodontal ligament (IPDL) cells. Cell viability was measured using a 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay. The expression of mineralization markers, including alkaline phosphatase (ALP), osteonectin (ON) and bone sialoprotein (BSP), and heme oxygenase-1 (HO-1) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. SP did not significantly change human IPDL cell viability, with the exception of the 24 hour treatment group. Treatment of human IPDL cells with $10^{-10}$ to $10^{-4}M$ SP upregulated mineralization marker and HO-1 expression in a time- and concentration-dependent manner. Our results suggest that SP may modulate osteoblastic cell differentiation of human IPDL cells through a mechanism involving HO-1 expression.

Stem cell properties of cells derived from canine periodontal ligament (성견 치주인대세포의 줄기세포 특성 연구)

  • Kim, Kyoung-Hwa;Kim, Su-Hwan;Seol, Yang-Jo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.479-488
    • /
    • 2007
  • In spite of the attention given to the study of mesenchymal stem cells derived periodontal ligament (PDL), there is a lack of information about canine PDL cells. In this study, we characterized canine PDL cells to clarify their stem cell properties, including self renewal, proliferate rate, stem cell markers and multipotency. PDL cells were obtained from extracted premolars of canines, following a colony forming assay and proliferation rate of sub-confluent cultures of cells for self-renewal, immunostaining for STRO-1 and CD146/MUC18 and a differentiation assay for multipotency. Canine PDL cells formed single-cells colonies and 25% of the PDL cells displayed positive staining for BrdU. The cells expressed the mesenchymal stem-cell markers, STRO-1 and CD146/MUC18. Under defined culture conditions, the cells differentiated into osteoblasts and adipocytes, but the cells didn't differentiated into chondrocytes. The findings of this study indicated that the canine PDL cells possess crucial stem cells properties, such as self-renewal and multipotency, and express the mesenchymal stem cell markers on their surface. The isolation and characterization of canine PDL cells makes it feasible to pursue preclinical models of periodontal regeneration in canine.

Effect of BMP-7 on the rat periodontal ligament cell (치주인대세포에 대한 Bone morphogenetic protein-7의 영향)

  • Kim, Kyung-Hee;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.289-298
    • /
    • 2005
  • Bone morphogenetic protein-7(BMP-7), a member of the transforming growth factor superfamily, stimulates osteoblast differentiation and bone formation. There are lots of evidences supporting a direct participation of periodontal ligament(PDL) cells on periodontal tissue regeneration. The purpose of this study was to evaluate the effect of recombinant human(rh) BMP-7 on primary rat PDL cells in vitro, with special focus on the ability of bone formation. The PDL cells were cultured with rhBMP-7 at the concentration of 0, 10, 25, 50, 100 and 200ng/ml for MTT assay. We evaluated the alkaline phosphatase activity at 3 and 5 days of incubation and the ability to produce mineralized nodules of rat PDL cells at 14 days of cell culture in concentration of 0, 10, 25, 50 and 100ng/ml. The cell activity was not reduced in cells treated with BMP-7 at $10{\sim}100ng/ml$, whereas the cell activity was reduced in the concentration of 200ng/ml than the control at day 1 and 3(p<0.01). At 3 and 5 day, alkaline phosphatase activity was significantly increased in cells treated with BMP-7 at 50ng/ml and 100ng/ml(p<0.05). The area of mineralized bone nodule was greater in cells treated with BMP-7 at 50 and 100 ng/ml than the control(p<0.01). These results suggest that rhBMP-7 stimulate rat PDL cells to differentiate toward osteoblast phenotype and secretion of the extracellular matrix of rat PDL cells.

A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast (치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구)

  • Lee, Joong-Kyou;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

The effects of chitosan on the human periodontal ligament fibroblasts in vitro (키토산이 치주인대 섬유아세포에 미치는 영향)

  • Paik, Jeong-Won;Lee, Hyun-jung;Yoo, Yun-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.823-832
    • /
    • 2001
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan(poly-N-acetyl glucosaminoglycan), a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the human periodontal ligament fibroblasts(hPDLFs) in vitro, with special focus on their proliferative properties by M'IT assay, the synthesis of type I collagen by reverse transcription-polymerase chain reaction(RT-PCR) and the activity of alkaline phosphatase(ALP). Fibroblast populations were obtained from individuals with a healthy periodontium and cultured with ${\alpha}MEM$ as the control group. The experimental groups were cultured with chitosan in concentration of 0.01,0.1, 1,2mg/ml. The results are as follows; 1. Chitosan-induced proliferative responses of hPDLFs reached a plateau at the concentration of O.lmg/ml(p<0.05). 2. When hPDLFs were stimulated with 0.lmg/ml chitosan, mRNA expression of type I collagen was up-regulated. 3. When hPDLFs were stimulated with 0.lmg/ml chitosan, ALP activity was significantly up-regulated(p<0.05). In summary, chitosan(0.lmg/ml) enhanced the type I collagen synthesis in the early stage, and afterwards, facilitated differentiation into osteogenic cells. The results of this in vitro experiment suggest that chitosan potentiates the differentiation of osteoprogenitor cells and may facilitate the formation of bone.

  • PDF

A STUDY ON THE EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN TENS10N SIDE OF RAT MOLAR PERIODONTAL LIGAMENT FOLLOWING EXPERIMENTAL TOOTH MOVEMENT (백서 구치의 실험적 치아이동시 견인측 치근막에서 혈관성장인자의 발현에 관한 연구)

  • Lim, Yong-Kyu;Shin, Choon-Shik;Lee, Dong-Ryul
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.121-136
    • /
    • 2001
  • This study was performed to analyse the expression of VEGF and it's receptor(VEGFR) in the tension side of the periodontal ligament following orthodontic tooth movement. Upper first molars of Sprague-Dawley rats were moved medially using closed coil spring for 1, 2, 24 hours and 3, 7, 14 days. H&E staining, immunohistochemical staining and in situ hybridization methods were used to analyse the change of the expression of VEGF and VEGFR. The results from this study were as follows : 1. Following tensional force, periodontal ligament showed elongation of fibers, compression and congestion of vessels and regional hemorrhage. These tissue changes were recovered within 3 days of force application. New bone formation was seen after 3 days of force application and continued for the remaining experimental periods. 2. Following tensional force, VEGF and VEGF mRNA expression was increased in the periodontal ligament cells, osteoblasts and cementoblasts. This change was followed by increased vasculature in the periodontal ligament. 3. After 3 days of tensional force, VEGF and VEGF mRNA expression was confined mainly to the osteopaths and the periodontal ligament cells adjacent to the alveolar bone. After 2 weeks of force application, VEGF and VEGF mRNA expression was reduced to the level of control sample. 4. VEGFRs(Flt-1, Flk-1) showed similar expression pattern and it's expression was mainly seen in the endothelial cells and osteoblasts. Following tensional force VEGFR expression was increased in the endothelial cells and osteoblasts. In conclusion, in the tension side of the penodontal ligament, ligament cells, osteoblast and cementoblast showed increased expression of VEGF & VEGF mRNA. It preceded the increase of vasculature and new bone formation. The increased expression of VEGF mRNA in cementoblast may induce periodontal vessels, which distribute mainly the bone side half of periodontal ligament, grow in the direction of tensional force. Increased expression of VEGFR & VEGFR mRNA not only in endothelial cell but in osteoblast, osteocyte and periodontal cells showed VEGF acts not only in paracrine manner but in autocrine one.

  • PDF

The Effects of low concentrative ${\beta}-APN$ on periodontal tissue of Rat (저농도의 ${\beta}-aminoproprionitrile$이 백서 치주조직에 미치는 영향)

  • Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.859-872
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of low concentrative ${\beta}-APN$ on the periodontal ligament and relationship between lathyrintic bodies and osteoclast cells near the by alveolar bone. Mandibles including teeth and periodontiums of 24 Sprague-Dawley rat was used. ${\beta}-APN$ 0.2g/kg/day soluted in mineral water was administrated for 5 days before sacrifice in experimental group. 3 rats on each day was sacrificed on 1, 3, 7, 11 days after stop administration ${\beta}-APN$. Histologic examination and the activity of osteoclasts by tartrate resistant acid phosphatase was observed. The results were as follows : 1. In experimental group, the The small foci of lathyrintic bodies surrounded by palisading fibroblasts were seen obviously on 1, 3 days and decreased after 7 days. On 11 days, fibroblasts of periodontal ligament similar to control group. 2. The lathyrintic bodies were seen in the middle zone of periodontal ligament of pressured area like furcation area, alveolar crest, bone resorption area than tensioned area of apposition area. 3. In experimental group of 1, 3 days, lathyrintic bodies were much seen in the area that osteoclasts was much distributed area. After 7 days, experimental group was seen the control group. In conclusion, rathyrintic bodies were formed by low concentrative ${\beta}-APN$ chiefly on the pressured area like furcation area, alveolar crest, bone resorption area than tensioned area of apposition side in periodontal tissue and concerned with osteoclast cells.

  • PDF

Responsiveness to Lipopolysaccharide Changes According to the Aging of Periodontal Ligament Fibroblasts

  • Jun, Ji-Hae;Kim, Gwan-Shik;Woo, Kyung-Mi;Min, Byung-Moo;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • The elderly suffer from an impaired immune function being obvious in a higher susceptibility to infections. Although the inflammatory cells are the major immunomodulatory cells, fibroblasts also secrete a variety of inflammatory cytokines and chemokines. Therefore periodontal tissue aging might playa role in development and progress of periodontitis. In this study, we investigated the effect of in vitro periodontal ligament cellular aging on the inflammatory cytokines, chemokines, and matrix metalloprotease(MMP)-2 expression induced by lipopolysaccharide(LPS) treatment. Three different cell populations were used; passages 4-5, 14-15, and 24-25 (at passage 27, more than 90% cells were replicative senescent). LPS increased the expression of interleukin(IL)-1${\beta}$, IL-6, and tumor necrosis factor-${\alpha}$, IL-8, RANTES, and MMP-2. However, the order of induction folds were passages 14-15 > 4-5 > 24-25. While the expression level of Toll-like receptor(TLR) 4 decreased according to the increase in passage number, the level of TLR2 was highest at passages 14-15 and then decreased at passages 24-25. While the spontaneous expression of IL-8 decreased according to the increase in passage number, that of RANTES and proMMP-2 increased according to the increase in passage number. These results suggest that the aging of periodontal ligament fibroblasts differentially affect the role as immunomodulatory cells in response to periodontopathic bacteria and therefore might be another risk factor of periodontitis progression.

Analysis of gene expression during mineralization of cultured human periodontal ligament cells

  • Choi, Hee-Dong;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.30-43
    • /
    • 2011
  • Purpose: Under different culture conditions, periodontal ligament (PDL) stem cells are capable of differentiating into cementoblast-like cells, adipocytes, and collagen-forming cells. Several previous studies reported that because of the stem cells in the PDL, the PDL have a regenerative capacity which, when appropriately triggered, participates in restoring connective tissues and mineralized tissues. Therefore, this study analyzed the genes involved in mineralization during differentiation of human PDL (hPDL) cells, and searched for candidate genes possibly associated with the mineralization of hPDL cells. Methods: To analyze the gene expression pattern of hPDL cells during differentiation, the hPDL cells were cultured in two conditions, with or without osteogenic cocktails (${\beta}$-glycerophosphate, ascorbic acid and dexamethasone), and a DNA microarray analysis of the cells cultured on days 7 and 14 was performed. Reverse transcription-polymerase chain reaction was performed to validate the DNA microarray data. Results: The up-regulated genes on day 7 by hPDL cells cultured in osteogenic medium were thought to be associated with calcium/iron/metal ion binding or homeostasis (PDE1A, HFE and PCDH9) and cell viability (PCDH9), and the down-regulated genes were thought to be associated with proliferation (PHGDH and PSAT1). Also, the up-regulated genes on day 14 by hPDL cells cultured in osteogenic medium were thought to be associated with apoptosis, angiogenesis (ANGPTL4 and FOXO1A), and adipogenesis (ANGPTL4 and SEC14L2), and the down-regulated genes were thought to be associated with cell migration (SLC16A4). Conclusions: This study suggests that when appropriately triggered, the stem cells in the hPDL differentiate into osteoblasts/cementoblasts, and the genes related to calcium binding (PDE1A and PCDH9), which were strongly expressed at the stage of matrix maturation, may be associated with differentiation of the hPDL cells into osteoblasts/cementoblasts.