• Title/Summary/Keyword: Periodontal guided tissue regeneration

Search Result 153, Processing Time 0.027 seconds

THE EFFECTS OF ROOT TREATMENT WITH CITRIC ACID AND TETRACYCLINE AND GUIDED TISSUE REGENERATION ON THE PERIODONTAL HEALING RESPONSES IN DOGS (성견에서 조직유도재생술과 구연산, 테트라싸이크린으로 치근면 처치한 경우 치주조직의 치유에 미치는 영향)

  • Kim, Ju-Hwan;Kim, Jong-Yeo;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.87-97
    • /
    • 1994
  • The ultimate goal of periodontal therapy is to fully reconstruct the periodontal attachment apparatus. Commonly used techniques for treatment of infrabony defects include a combination of root planing, curettage and root treatment. To prevent the apical migration of epithelial cells, the technique of guided tissue regeneration is used. The aim of this study is to compare the effects of root treatment with Citric acid & Tetracycline and Guided tissue regeneration in dogs. Experimental periodontitis was induced by the ligation of orthodontic elastic threads in the upper right and left premolars 3, 4 of five adult dogs for 6 weeks. 4 types of procedures were performed as follows; 1) Control graup : Mucoperiosteal flap 2) Experinental I : GTR used Gore-tex(R) membrane 3) Experinental II : Root treatment with citric acid (PHl) 4) Experinental III : Root treatment with tetracycline HCl (50mg/ml) There after, dogs were serially sacrificed at the 1, 2, 4, 5, 8 weeks, and the specimens were prepared, and stained with hematoxylin-eosin for the light microscopic evaluation. The results of this study were as follows; 1. Junctional epithelium reached to the notch through the furcation area in control group at 8 weeks. 2. In the aspects of the inflammatory cell infiltration, control group showed severe aggregation than experimental group I, II, III through the experimental period 3. New cementum was observed over the notch from 5 weeks in experimental group II 4. In the aspects of the amount of new bone formation, experimental group was better than control group, but there was not significant differences among the experimental group, I, II, III

  • PDF

A STUDY OF REGENERATION ENHANCEMENT OF DESTRUCTED PERIODONTAL TISSUE (파괴된 치주조직의 재생촉진에 관한 연구)

  • Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.407-417
    • /
    • 1995
  • In order to evaluate the effect of platelet-derived growth factor(PDGF-BB) and guided tissue regeneration(GTR) technique on the regeneration of destructed periodontal tissue,intentional through-and-through furcation defects(4mm in height) were made on both mandibular 2nd and 4th premolars of 8 adult male dogs(30-40lb). Experimental group 1 was composed of the premolars that were treated by only topical application of PDGF-BB with 0.05M acetic acid without any barrier membrane. Experimental group 2 was composed of the premolars that were treated by GTR with expanded polytetrafluoroethylene membrane(ePTFE : Gore-tex periodontal material, USA). Experimental group 3 was composed of the premolars that were treated by GTR with ePTFE after topical application of PDGFBE. Control group was composed of the premolars that were treated by coronally positioned flap operation only without use of PDGF-BB and ePTFE membrane. All ePTFE membranes were carefully removed 4 weeks after regenerative surgery, and all experimental animals were sacrificed 8 weeks after regenerative surgery. The light microscopic findings were as follows ; (1) In experimental group 1, rapid new bone formation along the-root surface with multiple ankylosis and root resorption by multinucleated giant cells, and dense connective tissue in the central portion of the furcation defects were observed. (2) In experimental group 2, it was observed that the furcation defects were filled with newly formed bone, Sharpey's fibers were embedded into new cementum on root dentin of furcation fornix area, but the central portion and the area under furcation fornix were still filled with dense connective tissue. (3) In experimental group 3, the furcation defects were regenerated with newly formed dense bone and regular periodontal ligament with Sharpey's fibers embedded into newly formed cementum and bone underneath fornix area. (4) In control group, unoccupied space, apical migration of epithelium, dense infiltration of inflammatory cells in subepithelial connective tissue in relation to heavy plaque accumulation, and root resorption by inflammatory reaction were shown, but any new cementum formation on resorbed dentin surface could not be observed. The present study demonstrated that the combined therapy of PDGF-BB and GTR could enhance the regeneration of destructed periodontal tissue.

  • PDF

FACTORS INFLUENCING THE WOUND HEALING IN THE PERIODONTAL INTRABONY LESION IN HUMAN;I : EFFECT OF THE e-PTFE BARRIER MEMBRANE (골내낭 처치시 치조골 재생에 관한 연구;I. e-PTFE 차단막의 효과)

  • Kim, Chong-Kwan;Cho, Kyoo-Sung;Chai, Jung-Kiu;Choi, Eun-Jeong;Moon, Ik-Sang;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.359-373
    • /
    • 1993
  • The ultimate objective of periodontal therapy is not only stopping the progression of periodontal disease, but also promoting the regeneration of lost periodontal tissue. Guided Tissue Regeneration, which is based on the principle that the goal of periodontal regeneration can be achieved by preventing apical migration of gingival epithelium and blocking cells originating from connective tissue, has been developed and used as a clinical procedure, and although it has shown excellent results in connective tissue healing, there have not been many studies showing its effect on the regeneration of alveolar bone loss due to periodontal disease. The objectives of this study are to investigate the result of 12 months-long treatment following guided tissue regeneration using expanded polytetrafluoroehylene membrane, and to observe the presence of regenerated alveolar bone. Forty-one teeth from 28 patients with clinical diagnosis of periodontitis has been selected. In fifteen of those interproximal intrabony defects, only flap operation had been carried out, and designated as the control group. Twenty-six intrabony defects received e-PTFE membrane following flap operation, and designated as the experimental group. Eleven teeth whose membrane had been exposed were excluded from the experiment. Various measurements including probing depth, loss of attachment, probing bone level and gingival recession have been recorded at 6th month and 12th month, and the significance of the changes has been analyzed. The results are as follows: 1. Probing depth at 6th and 12th month has shown a significant decrease in both groups (p<0.01), but significantly higher decrease was found in the experimental group compared to the control at the month(p<0.05). 2. Loss of attachment at 6th and 12th month has shown a significant decrease in both groups, but significantly higher decrease was found in the experimental group compared to the control (p<0.05). 3. Probing bone level at 6th and 12th month has shown a insignificant decrease in the control group and significant decrease in the experimental group (p<0.01). Significantly higher decrease in probing bone level was found in the experimental group (p<0.05). 4. Gingival recession at 6th and 12th month has shown a statistically significant increase (p<0.05), and the control group showed higher increase compared to the experimental group although no statistical significance was found. As these results have shown, the use of e-PTFE membrane in intrabony pockets results in marked decrease in the loss of attachment and probing bone level. This seems to indicate that e-PTFE membrane may play a role in alveolar bone regeneration in intrabony defects.

  • PDF

The effect of new bone formation of titanium mesh and demineralized freeze-dried bone (천공형 티타늄막과 탈회동결건조골의 신생골 형성에 대한 영향)

  • Lee, Yun-Ho;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.163-175
    • /
    • 2004
  • This study was performed to evaluate bone formation in the calvaria of rabbit by the concept of guided bone regeneration with titanium mesh membrane and demineralized freeze-dried bone. The animal was sacrificed at 2 weeks, 4 weeks, 8 weeks, and 12 weeks after the surgery. Non-decalcified specimens were processed for histologic analysis. 1. The titanium mesh but the biocompatibility was excellent the cell-occlusiveness was feeble. 2. The cell-occlusiveness was feeble and also the soft tissue growth of the upper part of the newly-formed bone after operating was excellent in early stage. 3. The maintenance ability of the space for the GBR very was excellent. 4. The titanium mesh the tissue-integration was superior the wound fixation ability excellent. 5. The demineralized freeze-dried bone did not promote the bone regeneration. 6. With the lapse of time, formation quantity of the bone some it increased, it increased quantity very it was feeble. Within the above results, the titanium mesh for the guided bone regeneration was excellent, the dεmineralized freeze-dried bone confirmed does not promote bone regeneration.

Drug loaded biodegradable membranes for guided tissue regeneration (약물함유 생체분해성 차폐막의 유도조직재생에 관한 연구)

  • Kim, Dong-Kyun;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.192-209
    • /
    • 1995
  • The purpose of this study was to evaluate drug-loaded biodegradable membranes for guided tissue regeneration(GTR). The membranes were made by coating mesh of polyglycolic acid(PGA) with polylactic acid(PLA) containing 10% flurbiprofen or tetracycline. The thickness of membrane was $150{\pm}30{\mu}m$, and the pore size of surface was about $8{\mu}m$ in diameter. The release of drugs from the membrane was measured in vitro. Cytotoxity test for the membrane was performed by gingival fibroblast cell culture, and the tissue response was observed after implant of membrane into the dorsal skin of the rat for 8 wks. Ability to guided tissue regeneration of membranes were tested by measuring new bone in the calvarial defects(5mm in diameter) of the rat for 5 weeks. The amount of flurbiprofen and tetracycline released from membrane were about 30-60% during 7 days. Minimal cytotoxity was observed in the membrane except 20% drug containing membrane. In histologic finding of rat dorsal skin, many inflammatory cells were observed around e-PTFE, polyglactin 910 and PLAPGA membrane after 1 or 2 weeks. PLA-PGA membrane was perforated by connective tissue after 4 or 6 weeks, and divided as a segment at 8 weeks. In bone regeneration guiding potential test, tetracycline loaded membrane was most effective (p

  • PDF

The Effect of Calcium-Phosphate Bovine Bone Powder on Guided Tissue Regeneration Using Biodegradable Membrane in Dogs (흡수성 차폐막으로 조직 유도 재생술시 골이식재가 성견 치주조직 재생에 미치는 영향)

  • Park, Jong-Beom;YIm, Sung-Bin;Chung, Chin-Hyung;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.167-180
    • /
    • 2000
  • The present study evaluated the effects of guided tissue regeneration using biodegradable membrane, with and without calcium-phosphate thin film coated deproteinated bone powder in beagle dogs. Contralateral fenestration defects(6 × 4 mm) were created 4 mm apical to the buccal alveolar crest on maxillary canine teeth in 5 beagle dogs. Ca-P thin film coated deproteinated bone powder was implanted into one randomly selected fenestration defect(experimental group). Biodegradable membranes were used to provide bilateral GTR. Tissue blocks including defects with overlying membranes and soft tissues were harvested following a four- & eight-week healing interval and prepared for histologic analysis. The results of this study were as follows. 1.......The regeneration of new bone, new periodontal ligament, and new cementum was occurred in experimental group more than control group. 2.......The collapse of biodegradable membranes into defects were showed in control group and the space for regeneration was diminished. In experimental group, the space was maintained without collapse by graft materials. 3........In experimental group, the graft materials were resorbed at 4 weeks after surgery and regeneration of bone surrounding graft materials was occurred at 8 weeks after surgery. 4.......Biodegradable membranes were not resorbed at 4 weeks and partial resorption was occurred at 8 weeks but the framework and the shape of membranes were maintained. No inflammation was showed at resorption. In conclusion, the results of the present study suggest that Ca-P thin film coated deproteinated bone powder has adjunctive effect to GTR in periodontal fenestration defects. Because it has osteoconductive property and prohibit collapse of membrane into defect, can promote regeneration of much new attachment apparatus.

  • PDF

Long-term evaluation of the bony regeneration following the guided tissue regeneration (차단막을 이요한 치조골재생의 장기적 평가)

  • Choi, Jeom-Il;Kim, Sung-Jo;Kim, Tae-Kyu
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.350-355
    • /
    • 1996
  • The present study was performed to evaluate the amount of bony regeneration following the guided tissue regeneration(GTR). Re-entry procedure has been performed at 1 year following the GTR with Gore-tex membranes on the furcal defects and the amount of bony regeneration was measured. Sites treatedwith open flap procedures were used as controls. The results reveated that significant amount of bone could be regenerated through the GTR procedures compared with convention flap procedures.

  • PDF

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.

THE BONE REGENERATIVE EFFECTS OF PARADIOXANONE ON THE CALVARIAL CRITICAL SIZE DEFECT IN SPRAGUE DAWLEY RATS (백서 두개골 실험적 결손부에서 Para-Dioxanone 차단막의 골조직 재생 효과)

  • Kwon, Suk-Hoon;Suk, Hun-Joo;Kim, Chong-Kwan;Jeong, Han-Sung;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.1
    • /
    • pp.61-77
    • /
    • 2003
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. Bone graft & guided tissue are being used for the regeneration of destroyed periodontium these days. Non-resorbable membranes were used for Guided tissue regeneration in early days, however more researches are focused on resorbable membranes these days. The aim of this study is to evaluate the osteogenesis of paradioxanone membrane on the calvarial critical size defect in Sprague Dawley rats. An 8 mm diameter surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into three groups: Untreated control group, Biomesh(R) group and paradioxanone group. The animals were sacrificed at 4, 8 and 12 weeks after surgical procedure. The specimens were examined by histologic, histomorphometric analyses. The results are as follows: 1. In histological view on Biomesh(R), no visible signs of resorption was observed at 4 weeks but progressive resorption was observed at 8 weeks through 12 weeks. Paradioxanone membrane expanded at 4 weeks, and rapid resorption was observed at 8 weeks. In both the membranes, inflammatory cells were observed around them. Inflammatory cells decreased with time but were still present at 12 weeks. More inflammatory cells were observed in paradioxanone membranes than in Biomesh(R) membrane. 2. The area of newly formed bone in the defects were 0.001${\pm}$0.001, 0.006${\pm}$0.005, 0.002${\pm}$0.003 at the 4 weeks, 0.021${\pm}$0.020, 0.133${\pm}$0.073, 0.118${\pm}$0.070 at the 8 weeks and 0.163${\pm}$0.067, 0.500${\pm}$0.197, 0.487${\pm}$0.214 at the 12 weeks in the control group, Biomesh(R) group and experimental group respectively. Compared to the control group, Biomesh(R) group displayed significant differences at 4,8, and 12 weeks and the paradioxanone group at 8 and 12 weeks.(P<0.05)

치주 질환을 동반한 상악 정중이개(diastema)환자에 있어 치주-교정-보철 치료의 치험 증례 보고

  • Kim, Tae-Hun;Lee, Seung-Hui
    • The Journal of the Korean dental association
    • /
    • v.36 no.11 s.354
    • /
    • pp.794-799
    • /
    • 1998
  • Many references report that abnormal diastema except temporary diastema existing in mixed dentition period is caused by maxilary heavy labial frenum, malocclusion, progressive periodontal disease, and loss of posterior teeth. We can diagnose patient as diastema caused by periodontal disease, especially, in case of accompanying progressively destructed anterior maxillary alveolar bone defect, and interseptal bone defect. We report Multiple disciplinary approach for diastema associated with periodontal disease. Periodontal treatment(Guided Tissue -Regeneration, alveoloplasty, bone graft), or thodontic treatment (space closure, redistribution), and the final proshodontic restoration for retention were used.

  • PDF