• 제목/요약/키워드: Periodic characteristics

검색결과 860건 처리시간 0.654초

NUMERICAL STUDY ON THE BLOOD FLOW CHARACTERISTICS OF STENOSED AND BIFURCATED BLOOD VESSELS WITH A PHASE ANGLE CHANGE OF A PERIODIC ACCELERATION (주기 가속도 위상변화에 따른 협착 및 분지 혈관의 혈류 특성에 대한 수치해석적 연구)

  • Ro, K.C.;Cho, S.W.;Lee, S.H.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • 제13권3호
    • /
    • pp.44-50
    • /
    • 2008
  • The present study is carried out in order to investigate the effect of the periodic acceleration in the stenosed and bifurcated blood vessels. The blood flow and wall shear stress are changed under body movement or acceleration variation. Numerical studies are performed for various periodic acceleration phase angles, bifurcation angles and section area ratios of inlet and outlet. It is found that blood flow and wall shear stress are changed about ${\pm}20%$ and ${\pm}24%$ as acceleration phase angle variation with the same periodic frequency. also wall shear stress and blood flow rate are decreased as bifurcation angle increased.

Development of the Numerical Procedures for the Control of Linear Periodic Systems (선형 주기시스템의 제어 및 수치해석적 절차 수립에 관한 연구)

  • Jo, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제17권12호
    • /
    • pp.121-128
    • /
    • 2000
  • The scope of this paper is focused to the systems which have the time period and they should be necessarily studied in the sense of stability and design method of controller to stabilize the orignal unstable systems. In general, the time periodic systems or the systems having same motions during certain time interval are easily found in rotating motion device, i.e., satellite or helicopter and widely used in factory automation systems. The characteristics of the selected dynamic systems are analyzed with the new stability concept and stabilization control method based on Lyapunov direct method. The new method from Lyapunov stability criteria which satisfies the energy convergence is studied with linear algebraic method. And the numerical procedures are developed with computational programming method to apply to the practical linear periodic systems. The results from this paper demonstrate the usefulness in analysis of the asymptotic stability and stabilization of the unstable linear periodic system by using the developed simulation procedures.

  • PDF

Periodic Limb Movement and Restless Legs Syndrome in Neurological Disorders (신경과 질환에서 주기성하지운동과 하지불안증후군)

  • Lee, Il-Keun
    • Sleep Medicine and Psychophysiology
    • /
    • 제7권2호
    • /
    • pp.84-87
    • /
    • 2000
  • The periodic limb movement (PLM) disorder is a disease of motor sign mainly in the lower extremities, whereas the restless leg syndrome (RLS) accompanies sensory symptoms in the lower extremities. These two disorders may occur in the one patient, which implies possible common pathophysiological background in those disorders. The aim of this article is to review the clinical features, diagnostic criteria, electrophysiological characteristics of the two disorders and their relation to neurological disorders.

  • PDF

Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution (주기적인 강성분포를 갖는 구형쉘의 좌굴해석)

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • 제4권4호
    • /
    • pp.77-84
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, the object of this study is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

Outlier prediction in sensor network data using periodic pattern (주기 패턴을 이용한 센서 네트워크 데이터의 이상치 예측)

  • Kim, Hyung-Il
    • Journal of Sensor Science and Technology
    • /
    • 제15권6호
    • /
    • pp.433-441
    • /
    • 2006
  • Because of the low power and low rate of a sensor network, outlier is frequently occurred in the time series data of sensor network. In this paper, we suggest periodic pattern analysis that is applied to the time series data of sensor network and predict outlier that exist in the time series data of sensor network. A periodic pattern is minimum period of time in which trend of values in data is appeared continuous and repeated. In this paper, a quantization and smoothing is applied to the time series data in order to analyze the periodic pattern and the fluctuation of each adjacent value in the smoothed data is measured to be modified to a simple data. Then, the periodic pattern is abstracted from the modified simple data, and the time series data is restructured according to the periods to produce periodic pattern data. In the experiment, the machine learning is applied to the periodic pattern data to predict outlier to see the results. The characteristics of analysis of the periodic pattern in this paper is not analyzing the periods according to the size of value of data but to analyze time periods according to the fluctuation of the value of data. Therefore analysis of periodic pattern is robust to outlier. Also it is possible to express values of time attribute as values in time period by restructuring the time series data into periodic pattern. Thus, it is possible to use time attribute even in the general machine learning algorithm in which the time series data is not possible to be learned.

Analysis of the Statistical and Time-Series Characteristics for Pan Evaporation (증발계 증발량의 시계예 및 통계적 특성 분석)

  • 구자웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제19권3호
    • /
    • pp.4472-4482
    • /
    • 1977
  • In order to estimate furture consumtive use, some statistical characteristics of 22-year pan evaporation data at four selected stations were calculated in this study. Districal distribution, trend analysis and time-series, statistical and periodic analysis for annual, monethly and ten-day values were performed in the statistical analysis. The stations are Seoul, Taeku, Jeonju and Mokpo for monthly data, and Suweon data are compared to the reported Penman values. The results are as followed: 1. Annual evaporation ranged to 990-1,375mm varying with the locations of the stations. The Districal distribution of evaporation in the Republic is shown in Fig. 1. 2. The trend analysis for annual evaporation resulted in detail in Table 2 and Fig. 2, through simple moving average methods. The results show relatively short-period data of about 10 years would be acceptable for field use. 3. The means and dispersions of monthly evaporation at four stations are detailed in Table 3. 4. The monthly evaporation approached to the trend of normal distribution Fig. 3 showed the examples of normal distribution for each typical monthly data. 5. The correlograms detailed in Fig. 4, shows the time-series characteristics of monthly evaporation, whose periodic term should be twelve months. 6. The periodic analysis for monthly evapolation results in Table 4. Fig. 5 shows the comparison of estimated values to actual and the trend approaches Shuster's periodic trend. 7. A periodic description of days after March 1 for irrigation periods was developed to predict ten-day evaporation in Fig. 6. The ten-day etraporation is different in the distribution form and occurence period of maximum values from the reported Penman's man's evapotranspiration.

  • PDF

STABILITY OF POSITIVE PERIODIC NUMERICAL SOLUTION OF AN EPIDEMIC MODEL

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • 제13권2호
    • /
    • pp.149-159
    • /
    • 2005
  • We study an age-dependent s-i-s epidemic model with spatial diffusion. The model equations are described by a nonlinear and nonlocal system of integro-differential equations. Finite difference methods along the characteristics in age-time domain combined with finite elements in the spatial variable are applied to approximate the solution of the model. Stability of the discrete periodic solution is investigated.

  • PDF

Basic characteristics of super-multi-stabilized chaotic pulse-trains

  • Furumachi, Ryouhei;Torikai, Hirouki;Saito, Toshimichi
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1996-1999
    • /
    • 2002
  • Applying a higher frequency periodic control signal, a state of a chaotic pulse-train generator is quantized. The circuit has various co-existing super-stable periodic pulse-trains (ab. SSPTs) and generates one of them depending on the initial state. Also correlation characteristics of the SSPTs are analyzed precisely. We then consider application of the SSPTs to spread sequences of CDMA with pulse-train signals.

  • PDF

Flow and Heat Transfer Characteristics of a Circular Cylinder with the Periodic Inlet Velocity (주기적인 입구 속도 변동에 따른 원관 주위 유동 및 열전달 특성)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • 제23권3호
    • /
    • pp.27-32
    • /
    • 2019
  • In this study, the vorticity distribution and the temperature distribution change around a circular cylinder were compared and analyzed with time for constant inlet velocity and periodic inlet velocity. Also, the frequency characteristics of the flow were analyzed by analyzing the time variation of lift and drag and their PSD(power spectral density). In the case of constant inlet velocity, the well known Karman vorticity distribution was shown, and vortices were alternately generated at the upper and lower sides of the circular cylinder. In case of periodic inlet velocity, it was observed that vortex occurred simultaneously in the upper and lower sides of the circular cylinder. In both cases, it was confirmed that the time dependent temperature distribution changes almost the same behavior as the vorticity distribution. For the constant inlet velocity, the vortex flow frequency is 31.15 Hz, and for the periodic inlet velocity, the vortex flow frequency is equal to the preriodic inlet velocity at 15.57 Hz. The mean surface Nusselt number was 99.6 for the constant inlet velocity and 110.7 for the periodic inlet velocity, which showed 11.1% increase in surface heat transfer.

Studies of Harmonic Performance on PBG Via Structures

  • Tong Ming-Sze;Kim Hyeong-Seok;Lu Yilong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권2호
    • /
    • pp.81-85
    • /
    • 2005
  • This paper presents some interesting results regarding the harmonic performance on the photonic band-gap (PBG) structures formed by periodic conducting vias. Study on PBG structures has been one of the major topics in electromagnetics, microelectronics, and communications areas. In most of the studies, the band-gap filtering behavior was fulfilled by a periodic pattern of perforations on the ground planes of microstrip lines. Nevertheless, the PBG characteristics can also be realized using a periodic via-pattern along the transmission-line circuits. Hence, some of the via-typed PBG structures are studied and their frequency characteristics in terms of the scattering parameters are presented. It is found that by varying the length of vias with respect to the period pattern, different harmonic performances are observed.