• Title/Summary/Keyword: Periodic Structure Theory

Search Result 33, Processing Time 0.042 seconds

The Embedded Atom Method Analysis of the Nickel (Nickel의 Embedded Atom Method 해석)

  • 정영관;김경훈;이근진;김종수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.572-575
    • /
    • 1997
  • The embedded atom method based on density functional theory was developed as a new means for calculating ground state properties of realistic metal system by Murray S. Daw, Stephen M. Foiles and Michael I. Baskes. In the paper, we had corrected constitutive formulae and parameters on the nickel for the purpose of doing Embedded Atom Method analysis. And then we have computed the properties of the nickel on the fundamental scale of the atomic structure. In result, simulated ground state properties, such as the lattice constant, elastics constants and sublimation energy, show good agreement with Daw's simulation data and with experimental data.

  • PDF

A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight (전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구)

  • 정성남;김경남;김승조
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

Study on Load Reduction of a Tidal Steam Turbine Using a Flapped Blade (플랩 블레이드를 이용한 조류 터빈의 부하 저감에 대한 연구)

  • Jeong, Dasom;Ko, Jin Hwan
    • Ocean and Polar Research
    • /
    • v.42 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • Blades of tidal stream turbines have to sustain many different loads during operation in the underwater environment, so securing their structural safety is a key issue. In this study, we focused on periodic loads due to wave orbital motion and propose a load reduction method with a blade design. The flap of an airplane wing is a well-known structure designed to increase lift, and it can also change the load distribution on the wing through deflection. For this reason, we adopted a passive flap structure for the load reduction and investigated its effectiveness by an analytical method based on the blade element moment theory. Flap torsional stiffness required for the design of the passive flap can be obtained by calculating the flap moment based on the analytic method. Comparison between a flapped and a fixed blade showed the effect of the flap on load reduction in a high amplitude wave condition.

Design of Ka/Ku Band Frequency Selective Surface with Triple Square Loop Slot Array (삼중 사각 루프 슬롯 배열 형태를 갖는 Ka/Ku 대역 주파수 선택 반사기 설계)

  • 고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1060-1070
    • /
    • 2003
  • The frequency selective surface for use in Ka/Ku band parabolic antenna of domestic satellite communications is proposed. The frequency selective surface structure consists of the infinite periodic arrays of the triple square loop slot element with narrow width on the honeycomb structure of multi-layered dielectric. The frequency selective surface is fabricated and measured. The good agreement is obtained between theory and experiment. It is demonstrated that the frequency selective surface passes 14/12 GHz band wave while reflecting 30/20 GHz band wave as required.

Electronic State of ZnO Doped with Elements of IIIB family, Calculated by Density functional Theory (범밀도함수법을 이용하여 계산한 IIIB족 원소가 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Min, Bok-Ki;Kim, In-Sung;Song, Jae-Sung;Kim, Yang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.589-593
    • /
    • 2005
  • The electronic states of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, were calculated using the density functional theory. In this study, the calculation was performed by two Programs; the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using DV-Xa. The optimized crystal structures calculated by VASP were compared to the measured structures. The density of state and the energy levels of dopant elements were shown and discussed in association with properties.

RADIAL AND AZIMUTHAL OSCILLATIONS OF HALO CORONAL MASS EJECTIONS

  • Lee, Harim;Moon, Y.J.;Nakariakov, V.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2015
  • We present the first observational detection of radial and azimuthal oscillations in full halo coronal mass ejections (HCMEs). We analyze nine HCMEs well-observed by LASCO from Feb 2011 to Jun 2011. Using the LASCO C3 running difference images, we estimated the instantaneous apparent speeds of the HCMEs in different radial directions from the solar disk center. We find that the development of all these HCMEs is accompanied with quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 mins. The amplitudes of the instant speed variations reach about a half of the projected speeds. The amplitudes are found to anti-correlate with the periods and correlate with the HCME speed, indicating the nonlinear nature of the process. The oscillations have a clear azimuthal structure in the heliocentric polar coordinate system. The oscillations in seven events are found to be associated with distinct azimuthal wave modes with the azimuthal wave number m=1 for six events and m=2 for one event. The polarization of the oscillations in these seven HCMEs is broadly consistent with those of their position angles with the mean difference of $42.5^{\circ}$. The oscillations may be connected with natural oscillations of the plasmoids around a dynamical equilibrium, or self-oscillatory processes, e.g. the periodic shedding of Alfvenic vortices. Our results indicate the need for advanced theory of oscillatory processes in CMEs.

  • PDF

Analysis of Failure Mechanism for Wire-woven Bulk Kaogme (Wire-woven Bulk Kagome 의 파손 메커니즘 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1690-1695
    • /
    • 2007
  • Lightweight metallic truss structures with open, periodic cell are currently being investigated because of their multi-functionality such as thermal management and load bearing. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. The subject of this paper is an examination of the failure mechanism of Wire woven Bulk Kagome(WBK). To address this issue, the out-of-plane compressive responses of the WBK has been measured and compared with theoretical and finite element (FE) predictions. For the experiment, 2 multi-layered WBK are fabricated and 3 specimens are prepared. For the theoretical analysis, the brazed joints of each wire in WBK are modeled as the pin-joint. Then, the peak stress of compressive behavior and elastic modulus are calculated based on the equilibrium equation and energy method. The mechanical structure with five by five cells on the plane are constructed is modeled using the commercial code, PATRAN 2005. and the analysis is achieved by the commercial FE code ABAQUS version 6.5 under the incremental theory of plasticity.

  • PDF

Leaky-Wave and DFB Characteristics of Optical Waveguide with Asymmetric Rectangular Grating Profile (비대칭 장방형 격자로 구성된 광 도파로의 누설 파와 DFB 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.151-156
    • /
    • 2021
  • Leakage and Bragg condition of optical waveguide with asymmetric rectangular grating profile are evaluated in detail by using novel and rigorous modal transmission-line theory (MTLT) based on eigenvalue problem. The optical waveguide composed by asymmetric rectangular grating occur leaky-wave stop-bands at Bragg conditions, and anomalies based on Rayleigh-Wood condition near Bragg conditions. Furthermore, DFB properties of the guiding structure at Bragg conditions are analyzed by applying longitudinal equivalent transmission-line with characteristic impedance of periodic grating. The numerical results show that filtering characteristics that maximize the reflected power of DFB waveguide are activated near Bragg conditions, in which leaky-wave stop-bands occur.

A Stage-Structured Predator-Prey System with Time Delay and Beddington-DeAngelis Functional Response

  • Wang, Lingshu;Xu, Rui;Feng, Guanghui
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.605-618
    • /
    • 2009
  • A stage-structured predator-prey system with time delay and Beddington-DeAngelis functional response is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated. The existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.

Observer Design of SRM for Position-Velocity Estimation (SRM의 위치-속도 추정을 위한 관측자 설계)

  • Lee, Tae-Gyoo;Kim, Jung-Tae;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.219-222
    • /
    • 1994
  • This thesis describes an observer of Switched Reluctance Motor for position. velocity and torque estimation using current sening. Inductance of SRM varies trapezoidally with respect to the rotor position. This means that the inductance of each phase is a periodic function with the same period. Under this condition. the observer with a constant gain can be developed though SRM has nonlinear characteristics. Because SRM has equivalent physical meaning with each period. The stability of error system which is the difference between actual system and observer system. is analyzed using Lyapunov and variable structure theory. The effectiveness of the proposed estimation is shown by various simulation.

  • PDF