References
- J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44(1975), 331-340. https://doi.org/10.2307/3866
- F. Berezovskaya, G. Karev, R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43(2001), 221-246. https://doi.org/10.1007/s002850000078
- K. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86(1982), 592-627. https://doi.org/10.1016/0022-247X(82)90243-8
- D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interaction, Ecology, 56(1975), 881-892. https://doi.org/10.2307/1936298
- B. Hassard, N. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, London Math Soc. Lect. Notes, Series, 41. Cambridge: Cambridge Univ. Press, 1981.
- Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
- Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36(1998), 389-406. https://doi.org/10.1007/s002850050105
- S. Li, X. Liao and C. Li, Hopf bifurcation in a Volterra prey-predator model with strong kernel, Chaos, Solitons & Fractals, 22(2004), 713-722. https://doi.org/10.1016/j.chaos.2004.02.048
- R. M. May, Stability and Complexity in Model Ecosystem, Princeton Univ. Press, Princeton, 1974.
- C. Sun, M. Han and Y. Lin, Analysis of stability and Hopf bifurcation for a delayed logistic equation, Chaos, Solitons & Fractals, 31(2007), 672-682. https://doi.org/10.1016/j.chaos.2005.10.019
- W. Sun, A stage-structure predator-prey system with Beddington-DeAngelis functional response, J. Southwest China Normal University, 30(5)(2005), 800-804.
- W.Wang, L. Chen, A predator-prey system with stage-structure for predator, Comput. Math. Appl., 33(1997), 83-91.