• 제목/요약/키워드: Periodic Fully Developed Flow

Search Result 18, Processing Time 0.036 seconds

Numerical Study on the Three-Dimensional Natural Convection Cooling of Periodically Fully Developed PCB Channel (주기적으로 완전발달된 PCB 채널의 3차원 층류 자연대류 냉각에 관한 수치적 연구)

  • 이관수;백창인;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2751-2761
    • /
    • 1994
  • A numerical investigation on the three-dimensional laminar natural convection heat transfer in the periodically fully developed PCB channel has been performed. When heat generating blocks mounted on the adiabatic wall make a channel with their facing shrouding wall, the flow inside the channel becomes periodically fully developed. A single module in the periodically fully developed region is chosen for computational domain in order to save computer storage and computational time. The periodic boundary condition is applied in the anlaysis. The effects of the parameters such as the Rayleigh number, the number of the modules, and the height of channel are examined to obtain the optimum condition for the enhancement of the cooling effectiveness. The result shows that the cooling effect is improved with increasing Rayleigh number and channel height, and decreasing the number of the module. The result also indicates that increasing the height of the channel and number of the module is recommended for a limited space.

A study on Flow and Heat Transfer Characteristics in a Duct with Periodic Pressure Gradient (주기적인 압력구배를 받는 덕트에서의 유동 및 열전달특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.369-381
    • /
    • 1992
  • Characteristics of flow and heat transfer have been studied numerically in a square duct with a periodic pressure gradient. The flow in a duct was assumed to be fully developed and constant heat flux was imposed at the surfaces of a square duct. The distributions of axial velocity and time-space averaged temperature are investigated with angular velocity and amplitude ratio at a given Reynolds number 1000. When the periodic pressure gradient was imposed axially in a duct, the reverse flow may be occurred near the duct wall. The magnitude of this reverse flow increases as the amplitude ratio increases or as the angular frequency decreases. In the ranges of the amplitude ratio and the angular velocity in present investigation, the ratio of the periodic time space averaged temperature to the nonperiodic space averaged temperature has been found to be greater than one. This means that the cooling effect at the duct walls deteriorates with a periodic situation compared with nonperiodic one.

Numerical Analysis of Fully Developed Turbulent Recirculating Flow and Heat Transfer for The Periodic Variations of Cross Sectional Area (周期的으로 斷面이 變化하는 完全確立된 亂流再循環 流動과 亂流熱傳達의 數値分析)

  • 이병곤;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.138-149
    • /
    • 1986
  • A numerical method is developed for the solution of fully developed turbulent recirculating flow whose cross-sectional area varies periodically. This enalbes the flow field analysis to be confined to a single isolated module, without involvement with the entrance region problem. This method are applied to the analysis of the turbulent flow field and heat transfer in artificially roughened annulus with repeated square rib.

Flow Characteristics of Two-Dimensional Closed Cavity near Unsteady Critical Reynolds Numbers (2차원의 밀폐캐비티의 비정상 임계레이놀즈수 근방의 유동특성)

  • Kim, Jin-Gu;Kim, Chun-Sik;Lee, Yeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.22-29
    • /
    • 1996
  • Flow characteristics of two-dimensional closed square cavities near unsteady critical Reynolds numbers were studied numerically at four Reynolds numbers : $8{\times}10^3,\;8.5{\times}10^3,\;9{\times}10^3\;and\;9.5{\times}10^3.$ A convection conservative difference scheme based upon SOLA to maintain the nearly 2nd-order spatial accuracy is adopted on irregular grid formation. Irregular grid number is $80{\times}80$ and its minimum size is about 1/400 of the cavity height(H) and its maximum is about 1/53 H. The result shows that the critical Reynolds number indicating the emergence of flow wnsteadiness is ranging from Re=$8{\times}10^3\;to\;8.5{\times}10^3$ and their flow patterns reveal periodic fluctuation during transient and fully developed stages. But macroscopic flow behavior in terms of instantaneous and time-mean characteristics represent remarkable difference.

  • PDF

A Study on Critical Reynolds Numbers of Two-Dimensional Closed Cavity by CFD (CFD에 의한 2차원 밀폐캐비티의 임계레이놀즈수에 관한 연구)

  • 김진구;조대환;이영호
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.122-129
    • /
    • 1997
  • Flow characteristics of two-dimensional closed square cavities near unsteady critical Reynolds numbers were studied numerically at five Reynolds numbers : 8${\times}10^3$, 8.5${\times}10^3$, 9${\times}10^3$, 9.5${\times}10^3$ and $10^4$ were investigated. A convection conservative difference scheme based upon SOLA to maintain the nearly 2nd-order spatial accuracy was adopted on irregular grid formation. Irregular grid number is 80${\times}$80 and its minimum size is about 1/400 of the cavity height(H) and its maximum is about 1/53 H. The result shows that the critical Reynolds number indicating the emergence of flow unsteadiness exists near Re=8.5${\times}10^3$ and their flow patterns reveal periodic fluctuation during transient and fully-developed stages.

  • PDF

A Modified Fractional Step Method of Keeping a Constant Mass Flow Rate in Fully Developed Channel and Pipe Flows

  • You, Jong-Woo;Choi, Hae-Cheon;Yoo, Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.547-552
    • /
    • 2000
  • The objective of this paper is to present a modified fractional step method of keeping a constant mass flow rate in spatially periodic flows, because original fractional step methods do not precisely keep the mass flow rate constant in time. In the modified method, the mean and fluctuating pseudo-pressure gradients are separately obtained at each time step. This method is successfully applied to channel and pipe flows and shown to be suitable for maintaining a constant mass flow rate in time.

  • PDF

The Near-Wall Flow Analysis Using Wall Function in LES Code(FDS5) (Wall function을 이용한 LES code(FDS5)의 벽 근처 유동해석)

  • Jang, Yong-Jun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1594-1600
    • /
    • 2011
  • Recently developed FDS5 CFD code has employed a near-wall flow treatment method which is Werner-Wengle wall law provided by NIST(National Institute of Standards and Technology). In this study, the wall law has been verified against DNS(Direct Numerical Simulation) data in the parallel plate. The $y^+$ was kept above 11 to fulfill the near-wall flow requirement in the grid generation. The total grid was $32{\times}32{\times}32$. The boundary condition for inlet and outlet was periodic condition and for both side, symmetric condition was used. The fully developed turbulent flow was generated and Re = 10,700. The simulated results were compared with DNS data. RANS results were also used for verification.

  • PDF

Flow/Heat Transfer Analysis and Shape Optimization of a Heat Exchanger with Internally Finned Tube (내부휜이 부착된 원형관 열교환기의 열/유동 해석 및 최적설계)

  • Lee Juhee;Lee Sanghwan;Lim Hyo-Jae;Park Kyoungwoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.460-468
    • /
    • 2005
  • Analyses of flow and heat transfer characteristics and shape optimization of internally finned circular tubes have been performed for three-dimensional periodically fully developed turbulent flow and heat transfer. CFD and mathematical optimization are coupled in order to optimize the shape of heat exchanger. The design variables such as fin widths $(d_{1},\;d_{2})$ and fin height (h) are numerically optimized by minimizing the pressure loss and maximizing the heat transfer rate for limiting conditions of $d_{1}=0.2\~1.5\;mm,\;d_{2}=0.2\~1.5\;mm,$ and $h=0.2\~1.5mm$. Due to the periodic boundary conditions along main flow direction, the three layers of meshes are considered. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem.

A Study on the Structure of Instantaneous Flow Fields of a Small-Size Axial Fan by Large Eddy Simulation (대규모 와 모사에 의한 소형축류홴의 순간유동장 구조에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.28-35
    • /
    • 2018
  • The large-eddy simulation (LES) was carried out to evaluate the instantaneous vector and vorticity profiles of a small-size axial fan (SSAF) at the operating point of full-flowrate. The downstream flow of the SSAF exhibits a shorter axial flow when not fully developed, especially the stronger vortex appears at the edge near the flow end. On the other hand, the downstream flow of the SSAF exhibits a longer axial flow, and the weaker vortex appears at the edge near the flow end when the flow is sufficiently developed. Moreover, in the downstream of the SSAF, a periodic and intermittent flow pattern appears at the edge showing the axial flow, and the instantaneous vorticity contour lines showing the form of a circle group are distributed at specific intervals from the downstream region of the blade tip, which is considered to be the result of the intermittency phenomenon influenced by the number of blades and the number of revolutions.

Shape Optimization of a Heat Exchanger with Internally Finned Tube (내부핀이 부착된 원형관 열교환기의 형상 최적화)

  • Lee, Ju-Hee;Lee, Sang-Hwan;Park, Kyoung-Woo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1418-1423
    • /
    • 2004
  • Optimization of a heat exchanger with internally finned circular tubes has been performed for three-dimensional periodically fully developed turbulent flow and heat transfer. The design variables of fin number N, fin width ($d_1,d_2$) and fin height(H), are numerically optimized for the limiting conditions of $N=22{\sim}37$, $d_1=0.5{\sim}1.5$ mm, $d_2=0.5{\sim}1.5$ mm, $H=0.1{\sim}1.5$. Due to the periodic boundary conditions along main flow direction, the three layers of meshes are considered. The CFD and the mathematical optimization are coupled to optimize the heat exchanger. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem.

  • PDF