• Title/Summary/Keyword: Period-Amplitude Characteristics

Search Result 140, Processing Time 0.022 seconds

Characteristics of Pressure-Drop Oscillations in a Boiling Channel (비등유로의 압력강하 요동특성)

  • Kim, B.J.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • Characteristics of pressure-drop oscillations(PDO) in a boiling channel were studied numerically and compared with experimental data. Effects of initial and boundary conditions on PDO were investigated in terms of oscillation period and amplitude. The period and amplitude of PDO increased with increasing of the compressible volume in the surge tank and the heat input. PDO occurred within the specific range of the fluid temperature, at which oscillation period and amplitude diminished rapidly with the increase of the fluid temperature. The increase of the loss coefficient in fluid supply line resulted in slightly longer oscillation period and larger amplitude. Numerical results showed good agreement with the experimental data.

  • PDF

Experimental Investigation on the Pressure-Drop Instabilities in Boiling Channel (비등유로의 압력강하 불안정성에 대한 실험적 고찰)

  • Kim, B.J.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • The characteristics of pressure-drop oscillations(PDO) in boiling channel are studied experimentally. The effects of initial and boundary conditions on PDO are investigated in terms of oscillation period and amplitude. The period and amplitude of PDO are increased with the increase in the compressible volume in surge tank and heat input. However the amplitude of PDO is decreased with fluid temperature under low subcooling condition. Higher initial insurge flowrate resulted in almost invariant oscillation period but lower amplitude. At higher heat input the oscillation of heater wall temperature is significant, whose period is the same as that of pressure-drop instability.

  • PDF

Fluttering Characteristics of the Ropes and Nets as an Active Stimulating Device inside the Cod End of a Trawl Net

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • An active stimulating device (ASD) consisting of a net panel or ropes fluttering in the turbulence inside the cod end was effective in driving fish near the cod end to reduce juvenile by-catch. The fluttering characteristics of the rope and net panel were examined by video observations and analyzed for fluttering amplitude and period in a water channel and in field experiments with a bottom trawl. The amplitude ratio of the fluttering ropes or nets in the tank test increased with the fluttering index as the diameter of the twine, mesh size, flexibility, and flow velocity changed, whereas the period decreased with the above factors. In bottom trawl experiments, the range of mean depth difference in the fluttering net panel was 12-17% of the length of the fluttering net, and the period of depth difference or three-dimensional (3D) tilt was revealed, with shorter ones ranging from 2 to 6 s. The amplitude as depth difference and period from field measurements were similar to those of nets in tank experiments and also to the period of 3D flow velocity inside the cod end. These results could be used to design an ASD that could be used for to the cod end of actual towed fishing gear to reduce juvenile by-catch.

Shaking Motion Characteristics of a Cod-end Caused by an Attached Circular Canvas during Tank Experiments and Sea Trials

  • Kim, Yonghae
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • A shaking motion could be used to improve fish escapement from a cod-end net by creating a sieving effect over the swept volume or by disturbing the optomotor response of the fish. In this study, a perpendicular shaking motion was generated in a towed cod-end net by a circular canvas attached to the end of the codend, which formed a biased cap-like shape. This concept was tested by using a model in a flow tank and by towing a prototype cod-end during sea trials. For the model tests, the amplitude of the shaking motion was $0.6{\pm}0.1$ times the rear diameter of the cod-end, and the period of the shaking motion was $2.6{\pm}0.1$ s at a flow velocity of 0.6 or 0.8 m/s. In the sea trials, the amplitude was $0.5{\pm}0.2$ times the rear diameter of the cod-end, and the period of the shaking motion was $7{\pm}4$ s at towing speeds of 1.2 or 1.7 m/s. Thus, the shaking amplitude during the sea trials was equal to or less than that observed in the tank tests, and the shaking period was twice as long. The shaking motion described by the amplitude and period could be an effective means to stimulate fish escapement from cod-end during fishing operations considering the response of the fish.

Characteristics of long-period swells measured in the near shore regions of eastern Arabian Sea

  • Glejin, Johnson;Kumar, V. Sanil;Amrutha, M.M.;Singh, Jai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.312-319
    • /
    • 2016
  • Measured wave data covering two years simultaneously at 3 locations along the eastern Arabian Sea reveals the presence of long-period (peak wave period > 18 s) low-amplitude waves (significant wave height < 1 m) and the characteristics of these waves are described in this article. In a year, 1.4-3.6% of the time, the low-amplitude long-period swells were observed, and these waves were mainly during the nonmonsoon period. The wave spectra during these long-period swells were multi-peaked with peak wave period around 18.2 s, the secondary peak period around 13.3 s and the wind-sea peak period at 5 s. The ratio of the spectral energy of the wind-sea peak and the primary peak (swell) was slightly higher at the northern location (0.2) than that at the southern location (0.15) due to the higher wind speed present at the northern location.

Analysis of derailment effect by vibration characteristics of rolling stock (철도차량의 진동특성에 의한 탈선영향 해석)

  • Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.355-360
    • /
    • 2005
  • This paper describes how to measure the running safety using vibration accelerometers theoretically, and considers the effect of vibration parameters, such as amplitude and period, on the running safety by numerical analysis, which shows that the running safety are decreased as those parameters are increased.

  • PDF

Characteristics of Cavitation-Erosion Damage with Amplitude in Seawater of 5052-O Al Alloy for Ship (선박용 5052-O 알루미늄 합금의 해수 내 진폭 변수에 따른 캐비테이션-침식 손상 특성)

  • Yang, Ye-Jin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.239-249
    • /
    • 2020
  • The characteristics of cavitation-erosion damage with changes in the amplitude of 5052-O aluminum alloy for ships were investigated in a seawater environment. In the cavitation-erosion experiment, the cavitation environment was created using a vibration-generating device with a piezo-electric effect. The amplitudes of 5 ㎛, 10 ㎛, and 30 ㎛ were created by changing the geometric shape of the cavitation horn. The resistance characteristics of cavitation-erosion damage were evaluated by weight loss and pitting area. The damaged surface was analyzed using scanning electron microscopy (SEM) and 3D optical microscopy. As the amplitude increased, the amount of damage and the area of the damaged surface increased, and the damage was concentrated at the center and edge of the specimen. The pit was created after the initial incubation period with increasing experimental time, and then the pits were merged to grow and propagate into craters, and eventually, the surface was detached and damaged. The cavitation-erosion damage after 30 minutes with amplitude of 10 ㎛ and 30 ㎛ was 1.48 and 2.21 times compared to 5 ㎛, respectively.

A Study on Autoignition of Granulated Activated Carbon with Change of Ambient Temperature (주위온도 변화에 따른 입상활성탄의 자연발화에 관한 연구)

  • 목연수;최재욱
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.45-53
    • /
    • 1992
  • Sponataneous ignition characteristics for granulated activated carbon were observed by performing experiments at constant ambient temperature and varying the ambient temperature sinusoidally. In case of varying the ambient temperature sinusoidally, the amplitudes of temperature were 5$^{\circ}C$, 1$0^{\circ}C$ and 15$^{\circ}C$ respectively, and the period in each amplitude was varied at an interval of 30minutes from zero to 3hours. As the results of experiments at a constant ambient temperature, the critical spontaneous ignition temperature of the sample decreased as the sample vessel size increased. Apparent activation energy of the sample calculated from the Frank-Kamenetskii's thermal Ignition theory was 38.82[kca1/mo1] In case of varying the ambient temperature sinusoidally, the critical spontaneous ignition tempera-ture was lower than that at the constant ambient temperature, and the minimum critical spontaneous ignition temperature decreased with the amplitude of heating sinusoidal curve. At the same amplitude, the critical spontaneous ignition temperature decreased until it reached the minimum point and then in-creased as the period increased.

  • PDF

Analysis of a Nonlinear Conservative Dynamical System Using VAXIMA (VAXIMA를 이용한 비선형 보존 동역학계의 해석)

  • 이원경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.755-760
    • /
    • 1990
  • VAXIMA is a computer software which gives us results in terms of parameters. We use VAXIMA to analyze quantitatively a conservative dynamical system with cubic and quintic nonlinear terms. The system is described by a nonlinear second-order autonomous ordinary differential equation. Using the Lindstedt-Poincare method, we obtain period-amplitude characteristics. In order to check the validity of the approximate solution, we integrate numerically the equation of motion.

Characteristics of tidal turbulence near the bottom at a coastal trench in Tongyoung, Korea

  • Kim, Yonghae;Hong, Chul-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.435-446
    • /
    • 2014
  • Tidal turbulence was examined using three-dimensional tidal velocity data observed at a trench offshore of Tongyoung, Korea. The kinetic energy and intensity, including the variation period of the flow velocity and direction, were used to investigate the relationships between tidal turbulence and fishing gear dynamics, including the effects of swimming fish during fishing operations. As the resultant velocity increased from 0.2 to 0.9 m/s, the kinetic energy also significantly increased, while the turbulence intensity decreased from 50 to 10%. Tidal flow in strong flow fields displayed shorter periods of between 4 and 10 s, as determined by fast Fourier transform, the global wavelet method, and peak event analysis, and the periods were compared with the period of response to swimming fish and to oscillation of fishing gear. As mean velocity increased, velocity amplitude also increased from 0.1 to 0.6 m/s, and its directional amplitude changed markedly from 20 and $90^{\circ}$. Our study suggests that tidal turbulence can influence fish behavior or fishing gear geometry during fishing operations, although our analysis considered only a limited area. In future work, observations should be carried out over a more extensive depth and area.