• Title/Summary/Keyword: Peri-implantation

Search Result 69, Processing Time 0.022 seconds

Advanced peri-implantitis cases with radical surgical treatment

  • McCrea, Shane J.J.
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Purpose: Peri-implantitis, a clinical term describing the inflammatory process that affects the soft and hard tissues around an osseointegrated implant, may lead to peri-implant pocket formation and loss of supporting bone. However, this imprecise definition has resulted in a wide variation of the reported prevalence; ${\geq}10%$ of implants and 20% of patients over a 5- to 10-year period after implantation has been reported. The individual reporting of bone loss, bleeding on probing, pocket probing depth and inconsistent recording of results has led to this variation in the prevalence. Thus, a specific definition of peri-implantitis is needed. This paper describes the vast variation existing in the definition of peri-implantitis and suggests a logical way to record the degree and prevalence of the condition. The evaluation of bone loss must be made within the concept of natural physiological bony remodelling according to the initial peri-implant hard and soft tissue damage and actual definitive load of the implant. Therefore, the reason for bone loss must be determined as either a result of the individual osseous remodelling process or a response to infection. Methods: The most current Papers and Consensus of Opinion describing peri-implantitis are presented to illustrate the dilemma that periodontologists and implant surgeons are faced with when diagnosing the degree of the disease process and the necessary treatment regime that will be required. Results: The treatment of peri-implantitis should be determined by its severity. A case of advanced peri-implantitis is at risk of extreme implant exposure that results in a loss of soft tissue morphology and keratinized gingival tissue. Conclusions: Loss of bone at the implant surface may lead to loss of bone at any adjacent natural teeth or implants. Thus, if early detection of peri-implantitis has not occurred and the disease process progresses to advanced peri-implantitis, the compromised hard and soft tissues will require extensive, skill-sensitive regenerative procedures, including implantotomy, established periodontal regenerative techniques and alternative osteotomy sites.

The Effect of Uterine Environment during Peri-implantation Period on the Ultrastructure of Zona Pellucida in Mouse Oocytes and Embryos (착상기간의 자궁내 환경이 생쥐 난자 및 배아의 투명대 미세구조에 미치는 영향)

  • Han, Sung-Won;Chung, Ho-Sam;Kang, Hee-Gyoo;Lee, Ho-Joon;Gye, Myung-Chan;Kim, Sung-Rye;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.345-353
    • /
    • 1999
  • In the studies on the hatching mechanisms in mammals, many investigators focused on the embryonic intrinsic factor(s) in in vitro culture, but the uterine environment as the extrinsic factor(s) is thought to play an important role in hatching mechanism. Therefore, to evaluate the effect of uterine environment on the hatching event in vivo, the immature(GV) and ovulated(MII) oocytes, and the late 2-cell embryos of mouse were transferred to pseudopregnant foster mother's uterus during peri-implantation period. So it was verified whether there would happen hatching by only uterine environment independently on embryonic stage. The ultrastructural changes of the zona surface of transferred group were compared with those 01 in vivo and vitro group by SEM. 36 hrs after transfer, the immature and ovulated oocytes almost degenerated, and the late 2-cell embryos developed to various embryonic stages. However, the embryos which didn't develop to blastula stage did not hatch. The ultrastructural network of ZP in transferred group seemed to be smoothed uniformly, which was different from in vitro group. In conclusion, it is suggested that the uterine environment during peri-implantation period enhances the embryo hatching by provoking the structural change of ZP.

  • PDF

Comparison of cone-beam computed tomography and digital panoramic radiography for detecting peri-implant alveolar bone changes using trabecular micro-structure analysis

  • Magat, Guldane;Oncu, Elif;Ozcan, Sevgi;Orhan, Kaan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Objectives: We compared changes in fractal dimension (FD) and grayscale value (GSV) of peri-implant alveolar bone on digital panoramic radiography (DPR) and cone-beam computed tomography (CBCT) immediately after implant surgery and 12 months postoperative. Materials and Methods: In this retrospective study, 16 patients who received posterior mandibular area dental implants with CBCT scans taken about 2 weeks after implantation and one year after implantation were analyzed. A region of interest was selected for each patient. FDs and GSVs were evaluated immediately after implant surgery and at 12-month follow-up to examine the functional loading of the implants. Results: There were no significant differences between DPR and CBCT measurements of FD values (P>0.05). No significant differences were observed between FD values and GSVs calculated after implant surgery and at the 12-month follow-up (P>0.05). GSVs were not correlated with FD values (P>0.05). Conclusion: The DPR and reconstructed panoramic CBCT images exhibit similar image quality for the assessment of FD. There were no changes in FD values or GSVs of the peri-implant trabecular bone structure at the 12-month postoperative evaluation of the functional loading of the implant in comparison to values immediately after implantation. GSVs representing bone mass do not align with FD values that predict bone microstructural parameters. Therefore, GSVs and FDs should be considered different parameters for assessing bone quality.

Effects of EGF and PAF on the Hatching and Implantation of Peri-implantation Stage Embryos

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A fertilized oocyte can get the competence for implantation through cleavage and stage-specific gene expression. These are under the control of autonomous and exogenous regulators including physiological culture condition. Endogenous and exogenous growth factors are considered as critical regulators of cleaving embryos during travel the oviduct and uterus. In this study, an effort was made to evaluate comprehensively the quality of embryos for implantation, grown in media enriched with EGF and PAF. The study evaluated developmental rates on given time, blastulation and hatching rates, and adhesion rates. Developmental rates of blastocyst to the hatching stage were significantly high in PAF treated group compared to the control in a dose-dependent manner but not in EGF group. Implantation rates were significantly high both PAF and EGF in a dose-dependent manner. H7, a PKC inhibitor, blocked the process of hatching of the blastocysts but combined treatment of EGF and PAF enhanced the hatching and implantation of blastocsyts. Based on these results it is suggested that EGF and PAF support acquirement of implantation competence at blastocyst stage through a PKC pathway.

Evaluation of peri-implant bone using fractal analysis (프랙탈 분석을 통한 임플란트 주변골 평가)

  • Jung Yun-Hoa
    • Imaging Science in Dentistry
    • /
    • v.35 no.3
    • /
    • pp.121-125
    • /
    • 2005
  • Purpose : The purpose of this study was to investigate whether the fractal dimension of successive panoramic radiographs of bone after implant placement is useful in the characterization of structural change in alveolar bone. Materials and Methods. Twelve subjects with thirty-five implants were retrospectively followed-up from one week to six months after implantation. Thirty-six panoramic radiographs from twelve patients were classified into 1 week, 1-2 months and 3-6 months after implantation and digitized. The windows of bone apical and mesial or distal to the implant were defined as periapical region of interest (ROI) and interdental ROI; the fractal dimension of the image was calculated. Results There was not a statistically significant difference in fractal dimensions during the period up to 6 months after implantation. The fractal dimensions were higher in 13 and 15mm than 10 and 11.5mm implant length at interdental ROIs in 3-6 months after implantation (P<0.01). Conclusion : Longer fixtures showed the higher fractal dimension of bone around implant. This investigation needs further exploration with large numbers of implants for longer follow-up periods.

  • PDF

Advantages of the outgrowth model for evaluating the implantation competence of blastocysts

  • Kim, Jihyun;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.2
    • /
    • pp.85-93
    • /
    • 2020
  • The implantation process is highly complex and difficult to mimic in vitro, and a reliable experimental model of implantation has yet to be established. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found significant correlations between blastocyst outgrowth in vitro and implantation in utero by ET. This review proposes the blastocyst outgrowth model as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further culture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesicles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.

Management of peri-implantitis associated with tear-like implant fracture: case reports (열리형 임플란트 파절과 연관된 임플란트 주위염의 관리: 증례 보고)

  • Kim, Yeon-Tae;Lee, Jae-Hong;Jeong, Seong-Nyum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.138-144
    • /
    • 2020
  • Implant fracture is rare, but one of the most serious problem in implantation. Treatment of implant fracture can be different according to the extent of the fracture and on the state of the surrounding prosthetic restoration. Maintaining or submerging implant after treatment of peri-implantitis can be useful options for cases of tear-like fracture on the coronal area of an implant.

Signaling Molecules at the Conceptus-Uterine Interface during Early Pregnancy in Pigs

  • Seo, Heewon;Choi, Yohan;Shim, Jangsoo;Kim, Mingoo;Ka, Hakhyun
    • Journal of Embryo Transfer
    • /
    • v.27 no.4
    • /
    • pp.211-221
    • /
    • 2012
  • The process of embryo implantation requires physical contact and physiological communication between the conceptus trophectoderm and the maternal uterine endometrium. During the peri-implantation period in pigs, the conceptus undergoes significant morphological changes and secretes estrogens, the signal for maternal recognition of pregnancy. Estrogens secreted from the conceptus act on uterine epithelia to redirect $PGF_2{\alpha}$, luteolysin, secretion from the uterine vasculature to the uterine lumen to prevent luteolysis as well as to induce expression of endometrial genes that support implantation and conceptus development. In addition, conceptuses secrete cytokines, interferons, growth factors, and proteases, and in response to these signals, the uterine endometrium produces hormones, protease inhibitors, growth factors, transport proteins, adhesion molecules, lipid molecules, and calcium regulatory molecules. Coordinated interactions of these factors derived from the conceptus and the uterus play important roles in the process of implantation in pigs. To better understand mechanism of implantation process in pigs, this review provides information on signaling molecules at the conceptus-uterine interface during early pregnancy, including recently reported data reported.

EFFECTS ON ER,CR:YSGG LASER ON PERI-IMPLANTITIS (임프란트 주위염에 대한 Er,Cr:YSGG 레이저 조사가 미치는 영향)

  • Choi, Sung-Lim;Kim, Jin-Hwan;Hwang, Dong-Hyeon;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.5
    • /
    • pp.428-436
    • /
    • 2008
  • For Longevity of implant, considerations of biomechanical and microbiological aspects must be done. Recently, due to the remarkable development of bone grafting procedure. Implant has been implanted into the more favorable sites but peri-implantitis resulted from periodontal bacteria may obscure the long-term prognosis. Although many different modalities have been introduced to treat the failed implant. Implant's surface and irreversible bony destruction around the implant prevents good result. After Er,Cr:YSGG (waterlase) laser using the wave-length of 2780nm has been introduced to dental field, good results have been reported. Because waterlase uses the hydrokinetic force of water. It is excellent device to detoxify the implant surface mechanically without the heat generation and damage to the implant surface. We designed to evaluate waterlase effect on the peri-implantitis has been occurred after implantation. Four beagle dogs were involved. We have made four premolar extraction in each right and left side of the lower jaw and placed two implants in the anterior of the jaw as a control and six implant were placed posterior in each socket after extraction immediately as an experimental group. We tied floss-silk in each implant to make peri-implantitis intentionally. After three months, we explored peri-implant sites on each experimental fixtures. Using waterlase laser irradiation was performed on that implantitis sites under 3W, air 30% and water 20% intensity for 2 minutes. In control group, we repositioned the flap to cover the exposed fixture without any supportive care. Three months later, we sacrificed experimental animals and extracted and preparated bone blocks with Donath and Breuner (982), Donath (988)'s methods and examined under microscope. We have obtained good re-osseointegration around fixtures after treating with waterlaser irradiation. But it was shown fibroosseointegration in the control group.

HISTOMORPHOMETRIC EVALUATION OF OSTEOGENESIS WITH BRUSHITE IMPLANT SURFACES IN DOGS (성견에서 거친 표면을 가지는 임플란트에서 골형성에 관한 조직형태계측학적인 평가)

  • Moon, Chul-Woong;Kim, Su-Gwan;Kim, Hak-Kyun;Moon, Seong-Yong;Lim, Sung-Chul;Oh, Ji-Su;Baik, Sung-Mun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.150-157
    • /
    • 2008
  • This study evaluated the influence of smooth and brushite-coated implant surfaces in dogs. The first through fourth mandibular premolars were extracted from eight young adult dogs. Twelve weeks after extraction. implantation was performed at the extraction sites. In total, 40 implant fixtures were implanted in the dog mandibles. Twenty machined implants served as controls and twenty brushite-coated surfaces served as tests. Dogs were sacrificed 2 and 4 weeks after implantation. The hemi-mandibles were obtained and processed histologically to obtain non-decalcified sections. Longitudinal sections of each implant were made and analyzed using light microscopy. The overall implant success rate was 83.3%. Histomorphometrically. the experimental group had a better percentage of bone-implant contact than the control group (p<0.05) and there was a significant difference between the 2- and 4-week groups after implantation (p<0.05) Our results suggest that the implant surface morphology influences the increase in peri-implant osteogenesis in the early period of peri-implant healing.