• Title/Summary/Keyword: Peri-implant

Search Result 306, Processing Time 0.025 seconds

Increase of the Width of Peri-implant Keratinized Tissue using Apically Positioned Flap: Case Report (근단 변위 판막술을 사용한 임플란트 주위 각화조직 폭경의 증대: 증례보고)

  • Chee, Young-Deok;Seon, Hwa-Kyeong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.407-417
    • /
    • 2013
  • The one of peri-implant soft tissue problems seen during the maintenance phase of implant therapy is an inadequate zone of keratinized tissue. Keratinized tissue plays a major role around teeth and dental implants, helping in maintaining and facilitating oral hygiene. A free gingival graft (FGG) is chosen to correct the soft tissue defects and provide optimal peri-implant health in order to increase the long-term prognosis of the implant reconstruction. However, the patient treated with FGG has pain and discomfort on donor site such as palate. It is also technically demanding, time consuming, and the color match of the tissue is often less than ideal. An apically positioned flap (APF) is selected for increasing the keratinized tissue simply while or after the second stage implant surgery. This case report shows successfully increasing the width of peri-implant kenratinized tissue through APF procedure on small site of dental implant instead of FGG.

A case report about the reconstruction procedures of the previously failed cylinderical implants site using distraction osteogenesis

  • Lee, Jung-Tae;Park, Shin-Young;Yi, Yang-Jin;Kim, Young-Kyun;Lee, Hyo-Jung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.2
    • /
    • pp.84-89
    • /
    • 2015
  • We report the eventually successful treatment of a huge bone defect and peri-implantitis following reconstruction of a previously failed intra-mobile cylinder implant system (IMZ) implant site using distraction osteogenesis (DO). In the anterior mandible, two IMZ implants failed and surgical debridement was performed in accordance to the patient's needs. Thereafter, mobility and suppuration were decreased and the patient visited the dental clinic on a regular basis for oral health maintenance. However, the inflammation did not resolve, and the bone destruction around the implants progressed for 4 years. Finally, the implants failed and a severe bone defect remained after implant removal. To reconstruct the bone defects, we attempted bone graft procedures. Titanium mesh was unsuccessfully used to obtain bone volume regeneration. However, DO subsequently was used to obtain sufficient bone volume for implant placement. The new implants were then installed, followed by prosthetic procedures. In conclusion, progression of peri-implantitis could not be arrested despite surgical intervention and repeated maintenance care for 3 years. Reconstruction of the peri-implantitis site was complicated due to its horizontal and vertical bone defects. Lesions caused by implant failure require an aggressive regenerative strategy, such as DO. DO was successful in reconstruction of a peri-implantitis site that was complicated due to horizontal and vertical bone defects.

Free gingival graft for the increase of peri-implant attached keratinized mucosa decreased after guided bone regeneration (골 유도 재생술 후 감소된 임플란트 주위 부착 각화 점막 증대를 위한 유리 치은 이식술 증례)

  • Kim, Deug-Han;Ji, Suk;Pang, Eun-Kyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.723-728
    • /
    • 2008
  • Purpose: During guided bone regeneration procedures for the augmentation of deficient alveolar ridge, primary closure of flap is necessary. For primary flap closure, flap is repositioned coronally and the zone of attached keratinized mucosa may decreased. The need for attached keratinized mucosa around dental implants is still controversial, but sufficient peri-implant attached keratinized mucosa would be beneficial for functional and esthetic aspects. This case report presents three cases that demonstrated free gingival graft for increasing the zone of peri-implant attached keratinized mucosa which was decreased after guided bone regeneration. Materials and Methods: In first case, maxillary incisors were extracted and guided bone regeneration was performed simultaneously. Because the membrane was exposed at 3 weeks after operation, the membrane was removed and free gingival graft was performed for primary flap closure. Free gingival graft was performed again at implant placement for the increase of attached keratinized mucosa. In second case, guided bone regeneration was performed on lower right first molar area, and implant was placed with free gingival graft. In third case, lower right molar area showed insufficient attached keratinized mucosa after implant placement with guided bone regeneration. When abutments were connected, free gingival graft with apically positioned flap was performed. Result: In these three cases, the zone of attached keratinized mucosa around dental implants was decreased after guided bone regeneration. And the increase of peri-implant attached keratinized mucosa could be obtained effectively by free gingival graft. Conclusion: Free gingival graft could be a effective treatment method increasing the zone of attached keratinized mucosa which was decreased after guided bone regeneration procedures.

Peri-implant bone length changes and survival rates of implants penetrating the sinus membrane at the posterior maxilla in patients with limited vertical bone height

  • Kim, Hae-Young;Yang, Jin-Yong;Chung, Bo-Yoon;Kim, Jeong Chan;Yeo, In-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.58-63
    • /
    • 2013
  • Purpose: The aim of this study was to measure the peri-implant bone length surrounding implants that penetrate the sinus membrane at the posterior maxilla and to evaluate the survival rate of these implants. Methods: Treatment records and orthopantomographs of 39 patients were reviewed and analyzed. The patients had partial edentulism at the posterior maxilla and limited vertical bone height below the maxillary sinus. Implants were inserted into the posterior maxilla, penetrating the sinus membrane. Four months after implant insertion, provisional resin restorations were temporarily cemented to the abutments and used for one month. Then, a final impression was taken at the abutment level, and final cement-retained restorations were delivered with mutually protected occlusion. The complications from the implant surgery were examined, the number of failed implants was counted, and the survival rate was calculated. The periimplant bone lengths were measured using radiographs. The changes in initial and final peri-implant bone lengths were statistically analyzed. Results: Nasal bleeding occurred after implant surgery in three patients. No other complications were found. There were no failures of the investigated implants, resulting in a survival rate of 100%. Significantly more bone gain around the implants (estimated difference=-0.6 mm, P=0.025) occurred when the initial residual bone height was less than 5 mm compared to the >5 mm groups. No significant change in peri-implant bone length was detected when the initial residual bone height was 5 mm or larger. Conclusions: This study suggests that implants penetrating the sinus membrane at the posterior maxilla in patients with limited vertical bone height may be safe and functional.

Use of Bovine-derived bone mineral (Bio-Oss Collagen$^{(R)}$) in surgical treatment of peri-implantitis: A case report (임상가를 위한 특집 3 - Peri-implantitis의 regeneration therapy 증례 보고)

  • Cho, Young Jae
    • The Journal of the Korean dental association
    • /
    • v.51 no.12
    • /
    • pp.650-657
    • /
    • 2013
  • The aim of this study was to achieve healing of Peri-implantitis defects and hard tissue augmentation using a bovine-derived bone mineral on the defect site. Two patients were treated with the surgical approach. With a full muco-periosteal flap elevation, the implant surfaces were exposed and granulation tissue removed around the implant and between the threads. Each surface of the contaminated implant was prepared with the air-abrasive device(PerioFlow$^{(R)}$) for decontamination. Bovine-derived bone mineral(Bio-Oss collagen$^{(R)}$) was then used to fill the defects and muco-periosteal flaps sutured to achieve transmucosal healing. Radiographs and clinical photographs were taken before and after 6 months of healing and an estimate of bone fill was assessed. Within the limits of the present case report, a surgical approach in treatment of peri-implantitis defects using a collagen form of bovine bone mineral was visited. Although limited, the two cases showed the stability and biocompatibility of a bovine-derived bone mineral and effectiveness of air-abrasive device(PerioFlow$^{(R)}$) as a decontamination method.

Unusual bone regeneration following resective surgery and decontamination of peri-implantitis: a 6-year follow-up (임플란트주위염의 삭제형 골수술 후 골재생 증례보고: 6년 추적관찰)

  • Kim, Hyun-Joo;Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.171-177
    • /
    • 2022
  • Peri-implantitis is an inflammatory lesion of the periodontium surrounding an endosseous implant, with progressive loss of the supporting peri-implant bone. The main purposes of treatment for peri-implantitis due to biological factors include addressing the inflammation and restoring a healthy but reduced periodontium around the implant, similar to the treatment of periodontitis in natural teeth. The proposed treatment protocol includes surgical treatment, mainly resective surgery, after non-surgical treatment such as oral hygiene instructions, mechanical cleansing of the fixture, and general or topical antiseptic or antibiotic application according to the extent of inflammation. In this article, we present a 6-year follow-up case showing unusual marginal bone regeneration after resective surgery and decontamination of an implant surface for the treatment of peri-implantitis and discuss the possible reasons.

Quantitative measurement of peri-implant bone defects using optical coherence tomography

  • Kim, Sulhee;Kang, Se-Ryong;Park, Hee-Jung;Kim, Bome;Kim, Tae-Il;Yi, Won-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.84-91
    • /
    • 2018
  • Purpose: The purpose of this study was to visualize and identify peri-implant bone defects in optical coherence tomography (OCT) images and to obtain quantitative measurements of the defect depth. Methods: Dehiscence defects were intentionally formed in porcine mandibles and implants were simultaneously placed without flap elevation. Only the threads of the fixture could be seen at the bone defect site in the OCT images, so the depth of the peri-implant bone defect could be measured through the length of the visible threads. To analyze the reliability of the OCT measurements, the flaps were elevated and the depth of the dehiscence defects was measured with a digital caliper. Results: The average defect depth measured by a digital caliper was $4.88{\pm}1.28mm$, and the corresponding OCT measurement was $5.11{\pm}1.33mm$. Very thin bone areas that were sufficiently transparent in the coronal portion were penetrated by the optical beam in OCT imaging and regarded as bone loss. The intraclass correlation coefficient between the 2 methods was high, with a 95% confidence interval (CI) close to 1. In the Bland-Altman analysis, most measured values were within the threshold of the 95% CI, suggesting close agreement of the OCT measurements with the caliper measurements. Conclusions: OCT images can be used to visualize the peri-implant bone level and to identify bone defects. The potential of quantitative non-invasive measurements of the amount of bone loss was also confirmed.

The Effect of Demineralized Freeze - Dried Bone Allograft in Guided Bone Regeneration on Supra - Alveolar Peri - Implant Defects in Dogs (성견의 치조 연상 임플란트주위 결손부에서의 탈회냉동건조골과 e-PTEE막의 효과)

  • Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2001
  • The purpose of this study was to evaluate the adjunctive combined effect of demineralized freeze-dried bone allograft(DFDB) in guided bone regeneration on supra-alveo-lar peri-implant defect. Supra-alveolar perio-implant defects, 3mm in height, each including 4 IMZ titanium plasma-sprayed implants were surgically created in two mongrel dogs. Subsequently, the defects were treated with 1 of the following 3 modalities: Control) no membrane or graft application, Group1) DFDB application, Group2) guided bone regeneration using an expanded polytetra-fluoroethylene membrane, Group3) guided bone regeneration using membrane and DFDB. After a healing period of 12-week, the animals were sacrificed, tissue blocks were harvested and prepared for histological analysis. Histologic examination were as follows; 1. New bon formation was minimal in control and Group 1, but considerable new bone formation was observed in Group 2 and Group 3. 2. There was no osteointegration at the implant-bone interface in the high-polished area of group2 and Group 3. 3. In fluorescent microscopic examination, remodeling of new bone was most active during week 4 and week 8. There was no significant difference in remodeling rate between group 2 and group 3. 4. DFDB particles were observed, invested in a connective tissue matrix. Osteoblast activity in the area was minimal. The results suggest that guided bone regeneration shows promising results in supra-alveolar peri-implant defects during the 12 week healing period although it has a limited potential in promoting alveolar bone regeneration in the high-polished area. There seems to be no significant adjunctive effect when DFDB is combined with GBR.

  • PDF

Influence of the adjacent periodontium and inter-implant distance on bone resorption around non-submerged implants;A retrospective clinical and radiographic study (인접 치주조직과 임플란트간 거리가 임플란트 주변 골흡수에 미치는 영향;임상 및 방사선사진 검사에 의한 후향적 연구)

  • Chang, Moon-Taek
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.535-541
    • /
    • 2004
  • The aims of the present study are firstly to investigate the amount of bone loss around non-submerged implants placed in the posterior region and secondly to investigate the relationship between inter-implant and implant-tooth distance and peri-implant bone loss. Thirty-one subjects with 60 implants were selected consecutively from the implant patient pool at the department of Chonbuk National University Hospital. To be included in the study subject, the implant should have been functioned more than 6 months after loading. Inter-implant and implant-tooth distance, distance between implant shoulder and the first bone contact with the implant(DIB) were measured from the scanning image of the radiograph of each implant. The result showed that; 1. inter-implant distance has a statistically significant relationship with DIB in Pearson correlation analysis. 2. the DIB at the implant facing surface of the implant was greater than that of tooth facing surface of the implant. Within limitation of this study, it is suggested to place an implant not too closely to adjacent implants, and the presence of a tooth adjacent to an implant may keep the level of tooth-facing surface of the implant. Further studies with a prospective design are needed to elucidate the relationship between bone changes and various dimensions around implants.

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.