• 제목/요약/키워드: Performance-base analysis

검색결과 1,008건 처리시간 0.031초

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

기초가진 로터-베어링 시스템의 상태공간 과도응답해석 (A State-Space Transient Response Analysis of Rotor-Bearing System with Base Excitation)

  • 이안성;김병옥;김영철;김영춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.669-674
    • /
    • 2004
  • In this study, the analytical method to evaluate the response of rotor-bearing system subjected to base excitation was presented. The equations of motion contain speed dependent gyroscopic terms, base rotation dependent parametric terms and several forcing function terms which depend on linear accelerations, rotational accelerations and a combination of linear and rotational combination. The study of rotor-bearing system excited by its base motion is not only able to predict the rotational performance, but provides the fundamental data for vibration isolation. In order to illustrate transient response, transient response analysis of a practical application sample were performed. The transient response was carried out for the given base excitation by using the state-space Newmark method that incorporates the average velocity concept.

  • PDF

플랜트 설비 지지용 대안 강구조 시스템의 내진성능 (Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure)

  • 곽병훈;안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

Performance-based framework for soil-structure systems using simplified rocking foundation models

  • Smith-Pardo, J. Paul
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.763-782
    • /
    • 2011
  • Results from nonlinear time-history analyses of wall-frame structural models indicate that the condition of vulnerable foundations -for which uplifting and reaching the bearing capacity of the supporting soil can occur before yielding at the base of the shear walls- may not be necessarily detrimental to the drift response of buildings under strong ground motions. Analyses also show that a soil-foundation system can inherently have deformation capacity well in excess of the demand and thus act as a source of energy dissipation that protects the structural integrity of the shear walls.

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • 한국도로학회논문집
    • /
    • 제8권2호
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF

Optimal design of bio-inspired isolation systems using performance and fragility objectives

  • Hu, Fan;Shi, Zhiguo;Shan, Jiazeng
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.325-343
    • /
    • 2018
  • This study aims to propose a performance-based design method of a novel passive base isolation system, BIO isolation system, which is inspired by an energy dissipation mechanism called 'sacrificial bonds and hidden length'. Fragility functions utilized in this study are derived, indicating the probability that a component, element, or system will be damaged as a function of a single predictive demand parameter. Based on PEER framework methodology for Performance-Based Earthquake Engineering (PBEE), a systematic design procedure using performance and fragility objectives is presented. Base displacement, superstructure absolute acceleration and story drift ratio are selected as engineering demand parameters. The new design method is then performed on a general two degree-of-freedom (2DOF) structure model and the optimal design under different seismic intensities is obtained through numerical analysis. Seismic performances of the biologically inspired (BIO) isolation system are compared with that of the linear isolation system. To further demonstrate the feasibility and effectiveness of this method, the BIO isolation system of a 4-storey reinforced concrete building is designed and investigated. The newly designed BIO isolators effectively decrease the superstructure responses and base displacement under selected earthquake excitations, showing good seismic performance.

트렁크 래치의 베이스 플레이트와 접촉스위치의 최적화 (Optimization of Base Plates and Contact Switches in Trunk Latches)

  • 김경남;노유정;김동훈
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.97-104
    • /
    • 2014
  • Automobile trunk latches enable trunks to be opened and closed by a latch mechanism, which can be selectively positioned between a locked condition and an open condition. To maintain structural and electronic performance of the trunk latch, the latch needs to endure impact load that occurs in its open and close motion, and a dynamic mechanism needs to be electronically controled by a contact switch connected with a small DC motor. A base plate, which is the most important component relating to the structural safety, commonly uses a high stiffness material SAPH440-P with high manufacturing cost. In this paper, through structural analysis and optimization, production cost is significantly reduced by replacing SAPH440-P used in some region of the base plate with engineering plastic PBT GF 20%. The optimized contact switch reduces difference between distributed pressures of its two legs, which leads to improve the electronic performance of the trunk latch.

Analysis and design of demountable circular CFST column-base connections

  • Li, Dongxu;Wang, Jia;Uy, Brian;Aslani, Farhad;Patel, Vipul
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.559-571
    • /
    • 2018
  • In current engineering practice, circular concrete-filled steel tubular (CFST) columns have been used as effective structural components due to their significant structural and economic benefits. To apply these structural components into steel-concrete composite moment resisting frames, increasing number of research into the column-base connections of circular CFST columns have been found. However, most of the previous research focused on the strength, rigidity and seismic resisting performance of the circular CFST column-base connections. The present paper attempts to investigate the demountability of bolted circular CFST column-base connections using the finite element method. The developed finite element models take into account the effects of material and geometric nonlinearities; the accuracy of proposed models is validated through comparison against independent experimental results. The mechanical performance of CFST column-base connections with both permanent and demountable design details are compared with the developed finite element models. Parametric studies are further carried out to examine the effects of design parameters on the behaviour of demountable circular CFST column-base connections. Moreover, the initial stiffness and moment capacity of such demountable connections are compared with the existing codes of practice. The comparison results indicate that an improved prediction method of the initial stiffness for these connections should be developed.

CuO 나노유체를 적용한 판형열교환기 성능에 대한 수치해석적 연구 (Numerical Analysis on the Performance Improvement of Plate Heat Exchanger by Applying to CuO Nanofluid)

  • 함정균;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.9-16
    • /
    • 2020
  • In this study, a numerical study was conducted to evaluate the performance improvement when CuO nanofluid was used in the plate heat exchanger. As a result, the heat transfer amount is increased by 5.45% when 2 vol% CuO nanofluid is used. The influence on the CuO nanofluid on the performance of heat exchanger is decreased by increasing the flow rate of working fluid. In addition, the overall heat transfer coefficient using 2 vol% CuO nanofluid decreased compared to the base fluid. However, the pressure drop and the consumption of the pump power is increased as the concentration of CuO nanofluid increased because the increase of the viscosity. These are increased up to 15.4% compared to those of the base fluid. Moreover, the performance index of CuO nanofluid is decreased by 12.6% compared to that of the base fluid.