• Title/Summary/Keyword: Performance isolation

Search Result 1,070, Processing Time 0.029 seconds

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

Dynamic Threshold Method for Isolation of Worm Hole Attack in Wireless Sensor Networks

  • Surinder Singh;Hardeep Singh Saini
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.119-128
    • /
    • 2024
  • The moveable ad hoc networks are untrustworthy and susceptible to any intrusion because of their wireless interaction approach. Therefore the information from these networks can be stolen very easily just by introducing the attacker nodes in the system. The straight route extent is calculated with the help of hop count metric. For this purpose, routing protocols are planned. From a number of attacks, the wormhole attack is considered to be the hazardous one. This intrusion is commenced with the help of couple attacker nodes. These nodes make a channel by placing some sensor nodes between transmitter and receiver. The accessible system regards the wormhole intrusions in the absence of intermediary sensor nodes amid target. This mechanism is significant for the areas where the route distance amid transmitter and receiver is two hops merely. This mechanism is not suitable for those scenarios where multi hops are presented amid transmitter and receiver. In the projected study, a new technique is implemented for the recognition and separation of attacker sensor nodes from the network. The wormhole intrusions are triggered with the help of these attacker nodes in the network. The projected scheme is utilized in NS2 and it is depicted by the reproduction outcomes that the projected scheme shows better performance in comparison with existing approaches.

Regularized model-free adaptive control of smart base-isolated buildings

  • Alvaro Javier Florez;Luis Felipe Giraldo;Mariantonieta Gutierrez Soto
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Smart base-isolated buildings rest on flexible pads known as base isolators that minimize the effect of external disturbances along with active/semi-active actuators. The strategies used to control these active components are typically based on system models that are known a priori. Although these models describe some of the most important dynamics of the elements involved in the system, the high degree of uncertainty in the behavior of a structure under external disturbances is very difficult to characterize using a fixed model. In this work, we propose a strategy that deals with this issue: the input that controls the actuator in the base isolation system results from the compound action of a controller that relies on a model of the system that is known a priori, and a control policy that is designed based on online data-driven inferences on the behavior of the system. In this way, the control design process incorporates both the prior information about the system and the unknowns of the system, such as non-modeled parameters and nonlinear behaviors in the building. We show through simulations the performance of the proposed method in an eight-story building subjected to seismic loading.

Corrosion Behavior of Cu-Ni Alloy Film Fabricated by Wire-fed Additive Manufacturing in Oxic Groundwater

  • Gha-Young Kim;Jeong-Hyun Woo;Junhyuk Jang;Yang-Il Jung;Young-Ho Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.211-217
    • /
    • 2024
  • The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu-Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu-Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu-Ni film. The results demonstrated that the AM-fabricated Cu-Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.

Characterization of small single photon avalanche diode fabricated using standard 180 nm CMOS process for digital SiPM

  • Jinseok Oh;Hakcheon Jeong;Min Sun Lee;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3076-3083
    • /
    • 2024
  • In this work, single photon avalanche diodes (SPADs) were fabricated using the standard 180 nm complementary metal-oxide semiconductor process. Their small size of 15-16 µ m and low operating voltage made it possible to easily integrate them with readout circuits for compact on-chip sensors, particularly those used in the radiation sensor network of a nuclear plant. Four architectures were proposed for the SPADs, with a shallow trench isolation (STI) guard ring and different depletion regions designed to demonstrate the main performance parameters in each experimental configuration. The wide absorption region structure with PSD and a deep N-well could achieve a uniform electric field, resulting in a stable dark count rate (DCR). Additionally, the STI guard ring was implanted to mitigate the premature edge breakdown. A breakdown voltage was achieved for a low operating voltage of 10.75 V. The DCR results showed 286.3 Hz per ㎛2 at an excess voltage of 0.04 V. A photon detection probability of 21.48% was obtained at 405 nm.

Free-space quantum key distribution transmitter system using WDM filter for channel integration

  • Minchul Kim;Kyongchun Lim;Joong-Seon Choe;Byung-Seok Choi;Kap-Joong Kim;Ju Hee Baek;Chun Ju Youn
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.806-816
    • /
    • 2024
  • In this study, we report a transmitter system for free-space quantum key distribution (QKD) using the BB84 protocol, which does not require an internal alignment process, by using a wavelength-division multiplexing (WDM) filter and polarization-encoding module. With a custom-made WDM filter, the signals required for QKD can be integrated by simply connecting fibers, thus avoiding the laborious internal alignment required for free-space QKD systems using conventional bulk-optic setups. The WDM filter is designed to multiplex the single-mode signals from 785-nm quantum and 1550-nm synchronization channels for spatial-mode matching while maintaining the polarization relations. The measured insertion loss and isolation are 1.8 dB and 32.6 dB for 785 nm and 0.7 dB and 28.3 dB for 1550 nm, respectively. We also evaluate the QKD performance of the proposed system. The sifted key rate and quantum bit error rate are 1.6 Mbps and 0.62%, respectively, at an operating speed of 100 MHz, rendering our system comparable to conventional systems using bulk-optic devices for channel integration.

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.

Isolation and Identification of Major Component from Roots of Potentilla chinensis (딱지꽃(Potentilla chinensis) 뿌리 추출물의 주요성분 분리동정)

  • Jung, Hae Soo;Kim, Hyoung Shik;Lee, Jeong Hun;Moh, Seo Jin;Yeo, Jin Hui;Park, Gi won;Moh, Sang Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.5-7
    • /
    • 2016
  • One of oriental medicinal plants, Potentilla chinensis, has been used for anti-inflammation, hemostatic, decryption, and antipyretic. Especially, a root of Potentilla chinensis was used as important material for oriental medication. Although several kinds of bioactive component of Potentilla chinensis extract from stems and leaves were identified, the major component of Potentilla chinensis from roots is not well established. In this study, the root of Potentilla chinensis was extracted in different solvent system and analyzed by high performance liquid chromatography (HPLC). According to HPLC analysis, a major component was isolated and its physicochemical properties were evaluated by mass spectrometry and nuclear magnetic resonance. Based on these results, isolated compound was identified as 2,3,8-Tri-O-methylellagic acid. And quantification of 2,3,8-Tri-O-methylellagic acid with different extraction solvent system was performed for industrial application.

Using Design to Make Doffing of Personal Protective Equipment Safer for Healthcare Workers (의료종사자의 안전한 개인보호장비 탈의를 위한 공간 설계에 관한 연구)

  • Matic, Zorana;Oh, Yeinn;Lim, Lisa
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.3
    • /
    • pp.17-26
    • /
    • 2020
  • Purpose: This paper presents research evidence that the environmental design of the doffing area in a biocontainment unit (BCU) can have a measurable impact on increasing the safety of frontline healthcare workers (HCW) during doffing of high-level personal protective equipment (PPE), and proposes optimized biocontainment unit design. Methods: From 2016 to 2019, The SimTigrate Design Lab conducted 3 consecutive studies, focusing on ways in which the built environment may support or hinder safe doffing. In the first study, to identify the risky behaviors, we observed 56 simulation exercises with HCWs in 4 BCUs and 1 high-fidelity BCU mockup. In the second study, we tested the effectiveness of a redesigned doffing area on improving the HCWs performance and used simulation, observation, and rapid prototyping in 1 high-fidelity mockup of a doffing area. In a follow-up study, we used simulation and co-design with HCWs to optimize the design of a safer doffing area in a full-size pediatric BCU mock-up. Results: We identified 11 specific risky behaviors potentially leading to occupational injury, or contamination of the PPE, or of the environment. We developed design strategies to create a space for safer doffing. In the second study, in a redesigned doffing area, the overall performance of HCW improved, and we observed a significant decrease in the number of risky behaviors; some risky behaviors were eliminated. There was a significant decrease in physical and cognitive load for the HCWs. Finally, we propose an optimized layout of a BCU for a safer process of PPE doffing. Implications: The proposed BCU design supports better staff communication, efficiency, and automates safer behaviors. Our findings can be used to develop design guidelines for spaces where patients with other highly infectious diseases are treated when the safety of the patient-facing HCWs is of critical importance.