• Title/Summary/Keyword: Performance isolation

Search Result 1,070, Processing Time 0.029 seconds

Design and Performance Test of Rubber Mounts for Shock-Isolation (고무를 이용한 완충요소의 설계 및 성능시험)

  • 유춘화;권형오;이신언
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 1992
  • In order to reduce the shock which may occur during shipping of a drumtype container, rubber mounts were designed using a commercial FEM package and manufactured, and then the performance was checked by static and dynamic test. According to the design specifications, the container system was tested by dropping. The experimental results are compared with the theoretical ones.

  • PDF

Pyroshock Isolation Performance Test using Wiremesh Isolators (와이어메쉬 절연계의 파이로 충격 절연 성능 시험)

  • Youn, Se-Hyun;Jang, Young-Soon;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.923-928
    • /
    • 2008
  • Pyrotechnic shock or pyroshock is characterized as a transient vibration phenomenon which shows large acceleration and high frequency range up to 10kHz during the operation of separation devices where explosives are used. During the flight of a launch vehicle, pyroshock is mainly generated at several events such as satellite separation, fairing separation and stage separation. In this paper, wiremesh isolators are introduced and several types of isolators are manufactured for the performance tests. For the investigation of typical characteristics of wiremesh isolators, compressive loading tests are basically performed and pyroshock tests are accomplished to confirm pyroshock isolation ability of each wiremesh isolator by using 4Kg dummy mass.

Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine (무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능)

  • Ma Fuhua;Choi J.Y.;Yang Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF

Seismic fragility assessment of isolated structures by using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.389-398
    • /
    • 2018
  • The seismic isolation system makes a structure isolated from ground motions to protect the structure from seismic events. Seismic isolation techniques have been implemented in full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability and reliability. As for the responses of an isolated structure due to seismic events, it is well known that the most uncertain aspects are the seismic loading itself and structural properties. Due to the randomness of earthquakes and uncertainty of structures, seismic response distributions of an isolated structure are needed when evaluating the seismic fragility assessment (or probabilistic seismic safety assessment) of an isolated structure. Seismic response time histories are useful and often essential elements in its design or evaluation stage. Thus, a large number of non-linear dynamic analyses should be performed to evaluate the seismic performance of an isolated structure. However, it is a monumental task to gather the design or evaluation information of the isolated structure from too many seismic analyses, which is impractical. In this paper, a new methodology that can evaluate the seismic fragility assessment of an isolated structure is proposed by using stochastic response database, which is a device that can estimate the seismic response distributions of an isolated structure without any seismic response analyses. The seismic fragility assessment of the isolated nuclear power plant is performed using the proposed methodology. The proposed methodology is able to evaluate the seismic performance of isolated structures effectively and reduce the computational efforts tremendously.

Evaluation of Anti-Oxidant from Natural Products (천연물로부터 유래한 천연 항산화제 규명)

  • Kwon, Jin-A;Yang, Yoon-Jung;Park, Jong-Hyuk;Kang, Se-Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20-20
    • /
    • 2011
  • In this study, we analyzed 80%MeOH extract of fruits of sorbaria sorbifolia var. stellipila MAX. to measure the total antioxidant capacity by oxygen radical absorbance capacity (ORAC) assay, individual flavonoid content by high-performance liquid chromatography (HPLC). n-Hexane ($1.02{\pm}0.036$), $CH_2Cl_2$ ($0.95{\pm}0.025$), EtOAc ($1.94{\pm}0.065$), n-BuOH ($1.98{\pm}0.054$), D.W. ($1.2{\pm}0.032$) fractions were examined antioxidative activity by ORAC assay. It was revealed that EtOAc($1.94{\pm}0.065$), n-BuOH($1.98{\pm}0.054$) fractions had significant antioxidative activity. The isolation and separation were facilitated using open column chromatography, while separation, purification and identification were accomplished by using high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR).

  • PDF

A Study on the Characteristics of Dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model (중간 면진층을 가지는 래티스 돔 구조물의 병렬 다질점계 등가모델을 이용한 동적 거동 특성에 관한 연구)

  • Han Sang-Eul;Lee Sang-Ju;Kim Min-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.187-194
    • /
    • 2006
  • Generally, earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for stability In this paper, the spatial structures are applied an isolation system to boundary parts between roof systems and sub-structures. So, it is necessary to examine the characteristics of dynamic behaviors of spatial structures governed by higher modes rather than lower modes different from the cases of high-rise buildings. The objectives of this paper are to develop the equivalent lumped mass model to simplify an analytical processes and to investigate the dynamic behaviors of roof systems according to the mass and stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

Waste Isolation Pilot Plant Performance Assessment: Radionuclide Release Sensitivity to Diminished Brine and Gas Flows to/from Transuranic Waste Disposal Areas

  • Day, Brad A.;Camphouse, R.C.;Zeitler, Todd R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.450-457
    • /
    • 2017
  • Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings (라멘복합구조 공동주택의 바닥충격음 실태)

  • 정정호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.

Evaluation of Post-LOCA Long Term Cooling Performance in Korean Standard Nuclear Power Plants

  • Bang, Young-Seok;Jung, Jae-Won;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.12-24
    • /
    • 2001
  • The post-LOCA long term cooling (LTC) performance of the Korean Standard Nuclear Power Plant (KSNPP) is analyzed for both small break loss-of-coolant accidents (LOCA) and large break LOCA at cold leg. The RELAP5/MOD3.2.2 beta code is used to calculate the LTC sequences based on the LTC plan of the Korean Standard Nuclear Power Plants (KSNPP). A standard input model is developed such that LOCA and the followed LTC sequence can be calculated in a single run for both small break LOCA and large break LOCA. A spectrum of small break LOCA ranging from \ulcorner.02 to 0.5 k2 of break area and a double-ended guillotine break are analyzed. Through the code calculations, the thermal-hydraulic behavior and the boron behavior are evaluated and the effect of the important action including the safety injection tank (SIT isolation and the simultaneous injection in LTC procedure is investigated. As a result, it is found that the sufficient margin is available in avoiding the boron precipitation in the core. It is also found that a further specific condition for the SIT isolation action need to be setup and it is recommended that the early initiation of the simultaneous injection be taken for larger break LTC sequences.

  • PDF