• Title/Summary/Keyword: Performance isolation

Search Result 1,070, Processing Time 0.034 seconds

Design of an Active Inductor-Based T/R Switch in 0.13 μm CMOS Technology for 2.4 GHz RF Transceivers

  • Bhuiyan, Mohammad Arif Sobhan;Reaz, Mamun Bin Ibne;Badal, Md. Torikul Islam;Mukit, Md. Abdul;Kamal, Noorfazila
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.261-269
    • /
    • 2016
  • A high-performance transmit/receive (T/R) switch is essential for every radio-frequency (RF) device. This paper proposes a T/R switch that is designed in the CEDEC 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology for 2.4 GHz ISM-band RF applications. The switch exhibits a 1 dB insertion loss, a 28.6 dB isolation, and a 35.8 dBm power-handling capacity in the transmit mode; meanwhile, for the 1.8 V/0 V control voltages, a 1.1 dB insertion loss and a 19.4 dB isolation were exhibited with an extremely-low power dissipation of 377.14 μW in the receive mode. Besides, the variations of the insertion loss and the isolation of the switch for a temperature change from - 25℃ to 125℃ are 0.019 dB and 0.095 dB, respectively. To obtain a lucrative performance, an active inductor-based resonant circuit, body floating, a transistor W/L optimization, and an isolated CMOS structure were adopted for the switch design. Further, due to the avoidance of bulky inductors and capacitors, a very small chip size of 0.0207 mm2 that is the lowest-ever reported chip area for this frequency band was achieved.

An experimental analysis of vibration-induced noise isolation characteristics of a sonar acoustic sensor (소나 음향센서의 진동유기 소음 차단 특성에 대한 실험적 연구)

  • Kim, Kyungseop;Je, Yub;Kim, Ho-Jun;Cho, Yo-Han;Lee, Jeong-Min;Kim, Donghyeon;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.193-199
    • /
    • 2019
  • In this paper, the results of underwater vibration experiment are analyzed to verify platform vibration-induced noise isolation characteristics of a hull-mounted acoustic sensor. The experimental condition causing platform vibration-induced noise is generated using the mock-up hull, where the acoustic sensor is installed, with shaker in an acoustic water tank. The performance indices of ATF (Acceleration Transfer Function), AVS (Acceleration Voltage Sensitivity), and IL (Insertion Loss) for the acoustic sensor are calculated from the output of the standard accelerometers, which are installed on the mock-up hull and the acoustic sensor, and the output signal of the acoustic sensor. The frequency-dependent noise isolation characteristics of the acoustic sensor are analyzed based on the calculated performance indices and an effectiveness of the experiment is examined.

An Experimental Study for the Shear Property and the Temperature Dependency of Seismic Isolation Bearings (지진격리받침의 전단특성 및 온도의존성에 대한 실험적 연구)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2008
  • Seismic isolation has been studied continuously as a solution of the seismic engineering to reduce the sectional forces and the damages of structures caused by earthquakes. To certify reliable design and installation of the seismic isolation systems, seismic isolation bearings should be fabricated under well planned quality control process, and proper evaluation tests for their seismic performance should be followed. In this study, shear property evaluation tests for the lead rubber bearings(LRB) and the rubber bearings(RB) were implemented and the temperature dependency tests were also implemented to evaluate the changes of shear properties according to the changes of temperature. After evaluation tests, the measured shear properties were compared to their design values and their deviation was analyzed comparing with the allowable error ranges specified in Highway Bridge Design Specifications. These results showed that a considerable number of isolation bearings have so large deviations from their design values that their error ranges were over or very close to the allowable ranges. And the test results for temperature dependency showed that the shear properties of isolation bearings would be changed in great degree by the change of temperature during their service period. If these two types of changes in their shear properties are superposed, it would possible that the changes of shear properties from their original design values are over than 50%.

Design of Base Isolated Building Considering Performance Based Design (구조성능 목표를 고려한 면진설계)

  • Hwang, Kee-Tae;Lee, Hyun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.700-703
    • /
    • 2004
  • The purpose of this study is to present the design methodology of base isolated buildings. To achieve the goal of this study, time-history analysis was performed with seismic performance level and recorded seismic data. From the analysis results of MDOF system, the maximum. displacement and base shear were evaluated as 25 cm and $4\%$ by the input level which is maximum velocity of 50 kine. By introducing hybrid isolation system, seismic energy can be concentrated consequently high seismic capacity of the total building is secured.

  • PDF

Optimal IMU Configurations for a SDINS

  • Kim, Kwang-Hoon;Lee, Jang-Gyu;Shim, Duk-Sun;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.5-116
    • /
    • 2001
  • When inertial navigation system(INS) employ more sensors that mutually orthogonal sets to three, the redundant sensor system can have improved reliability and accuracy. For the redundant system the placement of redundant sensors is related to the system performance and also the number and proper orientation of sensors are important. We consider INS sensor configurations using two IMUs comprised mutually orthogonal sets of three. We suggest several configurations using two IMUs and analyze the system performance and the FDI(fault detection and isolation) properties from suggested configurations.

  • PDF

Dynamic Analysis for Bridge Using the Experimental Results of Hysteretic Damping Bearing and Dynapot (교량용 내진 받침의 동특성 실험 결과를 이용한 교량의 해석)

  • 윤정방;박동욱;이동하;안창모
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.465-474
    • /
    • 2001
  • Base Isolation system is an effective design strategy that provides a practical substitute for the seismic design of bridge. In this study, the dynamic tests was performed on HDB (Hysteretic Damping Bearing) and Dynapot. Then, the dynamic analysis was carried out for a bridge using the experimental results to estimate the seismic performance of bearings. Analysis for bridge was performed for four types of earthquake loadings. The result of dynamic test and theoretical analysis indicate that the performance of HDB and Dynapot is appropriate for the earthquake loading.

  • PDF